Editorial article based on the results of the study human herpes virus reactivation in the pathogenesis of long COVID
https://doi.org/10.22328/2077-9828-2025-17-2-7-23
Abstract
The analytical review allows us to look at the problem of long-term consequences of coronavirus infection from the standpoint of synergistic interaction of herpesvirus pathogens and SARS-CoV-2. The authors provide data of the incidence of long-term post-COVID syndrome (Long COVID), the prevalence of herpesvirus diseases, and possible pathogenetic and clinical intersections in the formation of post-viral consequences in humans. The variety of clinical manifestations of Long COVID, possible causes of these symptoms are described, and data of the potential role of human herpesviruses in the development of central nervous system lesions and the formation of cognitive impairment are presented. Particular attention is paid to the immunological link in the pathogenesis of a number of herpes-associated diseases and Long COVID. Currently, not all mechanisms of damage to organs and systems in post-COVID syndrome have been studied and discovered, especially with the mutually aggravating effects of coronaviruses and human herpesviruses. Further research will provide new information and a more complete picture of cause-and-effect relationships in describing and explaining the immediate and long-term consequences of the viral infections under consideration, the formation of Long COVID, as well as potential targets for in-depth examination of patients and therapeutic measures.
About the Authors
E. V. BoevaRussian Federation
St. Petersburg
V. V. Rassokhin
Russian Federation
St. Petersburg
A. O. Norka
Russian Federation
St. Petersburg
A. A. Knizhnikova
Russian Federation
St. Petersburg
Z. R. Korobova
Russian Federation
St. Petersburg
N. A. Arsent’yeva
Russian Federation
St. Petersburg
A. R. Ivanova
Russian Federation
St. Petersburg
А. M. Klementev
Russian Federation
St. Petersburg
N. A. Belyakov
Russian Federation
St. Petersburg
References
1. Consequences of the COVID-19 pandemic / edited by N. A. Belyakov and S. F. Bagnenko. St. Petersburg: Publishing house Baltic Medical Educational Center, 2023. 464 p.: ill. (In Russ.)
2. Gáspár Z., Szabó B.G., Ceglédi A. et al. Human herpesvirus reactivation and its potential role in the pathogenesis of post-acute sequelae of SARSCoV-2 infection // GeroScience. 2025. Vol. 47. Р. 167–187. https://doi.org/10.1007/s11357-024-01323-9.
3. Nikolich-Zugich J., Knox K.S., Rios C.T. et al. SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes // GeroScience. 2020. Vol. 42. Р. 505–514. https://doi.org/10.1007/s11357-020-00186-0.
4. Centers for Disease Control and Prevention: Provisional Death Counts for Coronavirus Disease (COVID-19). https://www.cdc.gov/nchs/nvss/vsrr/covid19/index.htm. Accessed on 06/23/2024.
5. Russell S.J., Parker K., Lehoczki A. et al. Post-acute sequelae of SARS-CoV-2 infection (long COVID) in older adults // GeroScience. 2024. https://doi.org/10.1007/s11357-024-01227-8.
6. WHO. Post COVID-19 condition (Long COVID). https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition. Accessed at 31.03.2025.
7. Saito S., Shahbaz S., Luo X., Osman M., Redmond D., Cohen Tervaert J.W., Li L., Elahi S. Metabolomic and immune alterations in long COVID patients with chronic fatigue syndrome // Front Immunol. 2024. Vol. 15. Р. 1341843. https://doi.org/10.3389/fimmu.2024.1341843.
8. Bello-Chavolla O.Y., Fermin-Martinez C.A., Ramirez-Garcia D., Vargas-Vazquez A., Fernandez-Chirino L., Basile-Alvarez M.R., SanchezCastro P., Nunez-Luna A., Antonio-Villa N.E. Prevalence and determinants of post-acute sequelae after SARS-CoV-2 infection (Long COVID) among adults in Mexico during 2022: a retrospective analysis of nationally representative data // Lancet Reg. Health Am. 2024. Vol. 30. Р. 100688. https://doi.org/10.1016/j.lana.2024.100688.
9. Astin R., Banerjee A., Baker M.R., Dani M., Ford E., Hull J.H., Lim P.B., McNarry M., Morten K., O’Sullivan O. et al. Long COVID: mechanisms, risk factors and recovery // Exp. Physiol. 2023. Vol. 108. Р. 12–27. https://doi.org/10.1113/EP090802.
10. Chilunga F.P., Appelman B., van Vugt M., Kalverda K., Smeele P., van Es J., Wiersinga W.J., Rostila M., Prins M., Stronks K. et al. Differences in incidence, nature of symptoms, and duration of long COVID among hospitalised migrant and non-migrant patients in the Netherlands: a retrospective cohort study // Lancet Reg. Health Eur. 2023. Vol. 29. Р. 100630. https://doi.org/10.1016/j.lanepe.2023.100630.
11. Tsai J., Grace A., Espinoza R. et al. Incidence of long COVID and associated psychosocial characteristics in a large U.S. city // Soc. Psychiatry Psychiatr Epidemiol. 2024. Vol. 59. Р. 611–619. https://doi.org/10.1007/s00127-023-02548-3.
12. Boeva E.V., Belyakov N.A., Rassokhin V.V., Simbirtsev A.S. Chapter 15. Analysis of outbreaks of coronavirus infections and the COVID-19 pandemic // Epidemics and population of Russia / N. A. Belyakov, S. F. Bagnenko, T. N. Trofimova, A. A. Totolyan, E. K. Aylamazyan et al.: ed. N. A. Belyakov. St. Petersburg: Publishing house Baltic Medical Educational Center, 2024. 544 p.: ill. (In Russ.)
13. Shanbehzadeh S., Zanjari N., Yassin M., Yassin Z., Tavahomi M. Association between long COVID, functional activity, and health-related quality of life in older adults // BMC Geriatr. 2023. Vol. 23. Р. 40. https://doi.org/10.1186/s12877-023-03757-w.
14. Fung K.W., Baye F., Baik S.H., Zheng Z., McDonald C.J. Prevalence and characteristics of long COVID in elderly patients: an observational cohort study of over 2 million adults in the US // PLoS Med. 2023. Vol. 20. e1004194. https://doi.org/10.1371/journal.pmed.1004194.
15. Belyakov N.A., Bagnenko S.F., Rassokhin V.V., Trofimova T.N. et al. Evolution of the COVID-19 pandemic / еd. by N. A. Belyakov and S. F. Bagnenko. St. Petersburg: Publishing house Baltic Medical Educational Center, 2021. 410 p. (In Russ.).
16. Belyakov N.A., Rassokhin V.V., Yastrebova Е.B. Coronavirus infectious disease COVID-19. Nature of virus, pathogenesis, clinical manifestations, report 1. HIV infection and immunosuppression, 2020, Vol. 12, No. 1, рр. 7–21 (In Russ.). doi: http://dx.doi.org/10.22328/2077-9828-2020-12-1-7-21.
17. Belyakov N.A., Trofimova T.N., Simakina O.E., Rassokhin V.V. The dynamics of the COVID-19 pandemic and formation of the post-covid period in Russia. HIV Infection and Immunosuppressive Disorders, 2021, Vol. 13, No. 2, рр. 7–19 (In Russ.). doi: http://dx.doi.org/10.22328/2077-9828-2021-13-2-7-19.
18. Belyakov N.A., Rassokhin V.V., Totolyan N.A., Boeva E.V., Bobreshova A.S., Khalezova N.B., Kushnir Ya.B., Norka A.O. Delayed mental, neurological and somatic disorders associated with COVID-19. HIV Infection and Immunosuppressive Disorders, 2023, Vol. 15, No. 4, рр. 53–62 (In Russ.). https://doi.org/10.22328/2077-9828-2023-15-4-53-62.
19. Premraj L., Kannapadi N.V., Briggs J. et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: a meta-analysis // J. Neurol. Sci. 2022 Vol. 434. Р. 120–162.
20. Campen C., Visser F.C. Long-Haul COVID patients: prevalence of POTS are reduced but cerebral blood flow abnormalities remain abnormal with longer disease duration // Healthcare (Basel). 2022. Vol. 15, No. 4. Р. 10. https://doi.org/10.3390/healthcare10102105.
21. Altmann D.M., Whettlock E.M., Liu S., Arachchillage D.J., Boyton R.J. The immunology of long COVID // Nat. Rev. Immunol. 2023. Vol. 23. Р. 618–634. https://doi.org/10.1038/s41577-023-00904-7.
22. Vojdani A., Vojdani E., Saidara E., Maes M. Persistent SARS-CoV-2 Infection, EBV, HHV-6 and Other Factors May Contribute to Inflammation and Autoimmunity in Long COVID // Viruses. 2023. Jan 31. Vol. 15, No. 2. Р. 400. doi: 10.3390/v15020400. PMID: 36851614; PMCID: PMC9967513.
23. Lee M.H., Perl D.P., Steiner J., Pasternack N., Li W., Maric D., Safavi F., Horkayne-Szakaly I., Jones R., Stram M.N. et al. Neurovascular injury with complement activation and inflammation in COVID-19 // Brain. 2022. Vol. 145. Р. 2555–2568. https://doi.org/10.1093/brain/awac151.
24. Qiao H., Deng X., Qiu L., Qu Y., Chiu Y., Chen F., Xia S., Muenzel C., Ge T., Zhang Z. et al. SARS-CoV-2 induces blood-brain barrier and choroid plexus barrier impairments and vascular inflammation in mice // J. Med. Virol. 2024. Vol. 96. e29671. https://doi.org/10.1002/jmv.29671.
25. Nicolai L., Kaiser R., Stark K. Thromboinflammation in long COVID-the elusive key to postinfection sequelae? // J. Thromb. Haemost. 2023. Vol. 21. Р. 2020–2031. https://doi.org/10.1016/j.jtha.2023.04.039.
26. Prasad M., Leon M., Lerman L.O., Lerman A. Viral endothelial dysfunction: a unifying mechanism for COVID-19 // Mayo Clin. Proc. 2021. Vol. 96. Р. 3099–108. https://doi.org/10.1016/j.mayocp.2021.06.027.
27. Oikonomou E., Souvaliotis N., Lampsas S., Siasos G., Poulakou G., Theofilis P., Papaioannou TG., Haidich AB., Tsaousi G., Ntousopoulos V. et al. Endothelial dysfunction in acute and long standing COVID-19: a prospective cohort study // Vascul. Pharmacol. 2022. Vol. 144. Р. 106975. https://doi.org/10.1016/j.vph.2022.106975.
28. Fogarty H., Townsend L., Morrin H., Ahmad A., Comerford C., Karampini E., Englert H., Byrne M., Bergin C., O’Sullivan J.M. et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome // J. Thromb. Haemost. 2021. Vol. 192. Р. 546–553. https://doi.org/10.1111/jth.15490.
29. Owens C.D., Bonin Pinto C., Detwiler S., Olay L., Pinaffi-Langley A., Mukli P., Peterfi A., Szarvas Z., James J.A., Galvan V. et al. Neurovascular coupling impairment as a mechanism for cognitive deficits in COVID-19 // Brain Commun. 2024. Vol. 6: fcae080. https://doi.org/10.1093/braincomms/fcae080.
30. Greene C., Connolly R., Brennan D., Laffan A., O’Keeffe E., Zaporojan L., O’Callaghan J., Thomson B., Connolly E., Argue R. et al. Blood-brain barrier disruption and sustained systemic inflammation in individuals with long COVID-associated cognitive impairment // Nat. Neurosci. 2024. https://doi.org/10.1038/s41593-024-01576-9.
31. Sudre C.H., Murray B., Varsavsky T. et al. Attributes and predictors of long COVID // Nat. Med. 2021. Vol. 27. Р. 626–631. https://doi.org/10.1038/s41591-021-01292-y.
32. Rassokhin V.V., Arsentieva N.A., Korobova Z.R., Lyubimova N.E., Batsunov O.K., Boeva E.V., Knizhnikova A.A., Norka A.O., Khalezova N.B., Belyakov N.A. Immune dysregulation in long covid may contribute to the development of neurological disorders through the effects of cytokines. HIV infection and immunosuppression, 2024, Vol. 16, No. 4, рр. 7–16 (In Russ.). doi: http://dx.doi.org/10.22328/2077-9828-2024-16-4-7-16.
33. Reinhold D., Farztdinov V., Yan Y., Meisel C., Sadlowski H., Kuhn J., Perschel F.H., Endres M., Duzel E., Vielhaber S. et al. The brain reacting to COVID-19: analysis of the cerebrospinal fluid proteome. RNA and inflammation // J. Neuroinflammation. 2023. Vol. 20. Р. 30. https://doi.org/10.1186/s12974-023-02711-2.
34. Duindam H.B., Mengel D., Kox M., Gopfert J.C., Kessels R.P.C., Synofzik M., Pickkers P., Abdo W.F. Systemic inflammation relates to neuroaxonal damage associated with long-term cognitive dysfunction in COVID-19 patients // Brain Behav. Immun. 2024. Vol. 117. Р. 510–520. https://doi.org/10.1016/j.bbi.2024.02.002.
35. Nuber-Champier A., Cionca A., Breville G., Voruz P., de Alcantara I.J., Allali G., Lalive P.H., Benzakour L., Lovblad K.O., Braillard О. et al. Acute TNFalpha levels predict cognitive impairment 6–9 months after COVID-19 infection // Psychoneuroendocrinology. 2023. Vol. 153. Р. 106104. https://doi.org/10.1016/j.psyneuen.2023.106104.
36. Fernandez-Castaneda A., Lu P., Geraghty A.C., Song E., Lee M.H., Wood J., Yalcin B., Taylor K.R., Dutton S., Acosta-Alvarez L. et al. Mild respiratory SARS-CoV-2 infection can cause multi-lineage cellular dysregulation and myelin loss in the brain // bioRxiv. 2022. https://doi.org/10.1101/2022.01.07.475453.
37. Boesl F., Goereci Y., Gerhard A., Bremer B., Raeder V., Schweitzer F., Hoppmann U., Behrens J., Bellmann-Strobl J., Paul F et al. Cerebrospinal fluid findings in patients with neurological manifestations in post-COVID-19 syndrome // J. Neurol. 2024. Vol. 271. Р. 59–70. https://doi.org/10.1007/s00415-023-12092-4.
38. Bonilla H., Tian L., Marconi V.C., Shafer R., McComsey G.A., Miglis M., Yang P., Bonilla A., Eggert L., Geng L.N. Low-dose naltrexone use for the management of post-acute sequelae of COVID-19 // Int. Immunopharmacol. 2023. Vol. 124. Р. 110966. https://doi.org/10.1016/j.intimp.2023.110966.
39. Human herpesvirus infections: a guide for doctors / ed. by V. A. Isakov. 2nd ed., revised and enlarged. St. Petersburg: SpetsLit, 2013. 670 p.: ill. (In Russ.). ISBN 978-5-299-00454-0.
40. Whitley R.J. Herpesviruses // Whitley R.J. Medical Microbiology. 4th ed. Galveston (TX): University of Texas Medical Branch at Galveston, 1996. Chapter 68.
41. White D.W., Suzanne Beard R., Barton E.S. Immune modulation during latent herpesvirus infection // Immunol. Rev. 2012. Vol. 245. Р. 189– 208. https://doi.org/10.1111/j.1600-065X.2011.01074.x.
42. Neverov V.A. Modification of the course of post-COVID syndrome associated with reactivation of chronic persistent Epstein−Barr virus infection and chronic nasopharyngotonsillitis of mixed etiology. Russian Family Doctor, 2023, Vol. 27, No. 1, рр. 51–56 (In Russ.). doi: https://doi.org/10.17816/RFD217717.
43. Thomas S.K., Gough G., Latchman D.S., Coffin R.S. Herpes simplex virus latency-associated transcript encodes a protein which greatly enhances virus growth, can compensate for deficiencies in immediate-early gene expression, and is likely to function during reactivation from virus latency // J. Virol. 1999. Vol. 73. Р. 6618–6625. https://doi.org/10.1128/JVI.73.8.6618-6625.1999.
44. Rauwel B., Jang S.M., Cassano M. et al. Release of human cytomegalovirus from latency by a KAP1/TRIM28 phosphorylation switch // Elife. 2015. Vol. 4. https://doi.org/10.7554/eLife.06068.
45. Groves I.J., Matthews S.M., O’Connor C.M. Host-encoded CTCF regulates human cytomegalovirus latency via chromatin looping // Proc. Natl. Acad. Sci. USA. 2024. Vol. 121. e2315860121. https://doi.org/10.1073/pnas.2315860121.
46. Liu X.F., Wang X., Yan S. et al. Epigenetic control of cytomegalovirus latency and reactivation // Viruses. 2013. Vol. 5. Р. 1325–1345. https://doi.org/10.3390/v5051325.
47. Nikolich-Zugich J., Cicin-Sain L., Collins-McMillen D. et al. Advances in cytomegalovirus (CMV) biology and its relationship to health, diseases, and aging // Geroscience. 2020. Vol. 42. Р. 495–504. https://doi.org/10.1007/s11357-020-00170-8.
48. Sandhu P.K., Buchkovich N.J. Human Cytomegalovirus decreases major histocompatibility complex class II by regulating class II transactivator transcript levels in a myeloid cell line // J. Virol. 2020. Vol. 94. https://doi.org/10.1128/JVI.01901-19.
49. Diggins N.L., Hancock M.H. HCMV miRNA targets reveal important cellular pathways for viral replication, latency, and reactivation // Noncoding RNA. 2018. Vol. 4. https://doi.org/10.3390/ncrna4040029.
50. Abdalla A.E., Mahjoob M.O., Abosalif K.O.A., Ejaz H., Alameen A.A.M., Elsaman T. Human cytomegalovirus-encoded microRNAs: a master regulator of latent infection // Infect. Genet. Evol. 2020. Vol. 78. 104119. https://doi.org/10.1016/j.meegid.2019.104119.
51. Goodrum F. The complex biology of human cytomegalovirus latency // Adv. Virus Res. 2022. Vol. 112. Р. 31–85. https://doi.org/10.1016/bs.aivir.2022.01.001.
52. Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: biology and clinical disease // Cell. 2022. Vol. 185. Р. 3652–3670. https://doi.org/10.1016/j.cell.2022.08.026.
53. Smirnova K.V., Diduk S.V., Senyuta N.B., Gurtsevitch V.E. Molecular biological properties of the Еpstein-Barr virus LMP1 gene: structure, function and polymorphism. Problems of Virology, 2015, Vol. 60, рр. 5–13 (In Russ.).
54. Wen K.W., Wang L., Menke J.R., Damania B. Cancers associated with human gammaherpesviruses // FEBS J. 2022. Vol. 289. Р. 7631–7669. https://doi.org/10.1111/febs.16206.
55. Gloghini A., Dolcetti R., Carbone A. Lymphomas occurring specifically in HIV-infected patients: from pathogenesis to pathology // Semin. Cancer Biol. 2013. Vol. 23. Р. 457–467. https://doi.org/10.1016/j.semcancer.2013.08.004.
56. Rassokhin V.V., Nekrasova A.V. Рathogenetic parallels and clinical relationships of HIV infection and Hodgkin’s lymphoma. HIV Infection and Immunosuppressive Disorders, 2024, Vol. 16, No. 1, рр. 7–22 (In Russ.). doi: http://dx.doi.org/10.22328/2077-9828-2024-16-1-7-22.
57. Bhagavathi S., Wilson J.D. Primary central nervous system lymphoma // Arch. Pathol. Lab. Med. 2008. Vol. 132. Р. 1830–1834. https://doi.org/10.5858/132.11.1830.
58. Bjornevik K., Munz C., Cohen J.I., Ascherio A. Epstein-Barr virus as a leading cause of multiple sclerosis: mechanisms and implications // Nat. Rev. Neurol. 2023. Vol. 19. Р. 160–171. https://doi.org/10.1038/s41582-023-00775-5.
59. Dioverti M.V., Razonable R.R. Cytomegalovirus // Microbiol. Spectr. 2016. Vol. 4. https://doi.org/10.1128/microbiolspec.DMIH2-0022-2015.
60. Wills M.R., Poole E., Lau B., Krishna B., Sinclair J.H. The immunology of human cytomegalovirus latency: could latent infection be cleared by novel immunotherapeutic strategies? // Cell Mol. Immunol. 2015. Vol. 12. Р. 128–138. https://doi.org/10.1038/cmi.2014.75.
61. Kitamura N., Abbas K., Nathwani D. Public health and social measures to mitigate the health and economic impact of the COVID-19 pandemic in Turkey, Egypt, Ukraine, Kazakhstan, and Poland during 2020–2021: situational analysis // BMC Public Health. 2022. Vol. 22. Р. 991. https://doi.org/10.1186/s12889-022-13411-6.
62. Nikolich-Zugich J., Knox K.S., Rios C.T., Natt B., Bhattacharya D., Fain M.J. SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes // Geroscience. 2020. Vol. 42. Р. 505–514. https://doi.org/10.1007/s11357-020-00186-0.
63. Pantry S.N., Medveczky P.G. Latency, integration, and reactivation of human herpesvirus-6 // Viruses. 2017. Vol. 9. https://doi.org/10.3390/v9070194.
64. Mardanly S.G., Simonova E.G., Simonov V.V. Herpesvirus infections: etiology and pathogenesis, clinical features and laboratory diagnostics, epidemiology and prevention. OrekhovoZuyevo: Publishing house State Humanitarian and Technological University, 2020. 316 p. (In Russ.). ISBN 978-5-87471-360-4. EDN BRNQXO.
65. Agut H., Bonnafous P., Gautheret-Dejean A. Human herpesviruses 6A, 6B, and 7 // Microbiol. Spectr. 2016. Vol. 4. https://doi.org/10.1128/microbiolspec.DMIH2-0007-2015.
66. Ariza M.E. Myalgic encephalomyelitis/chronic fatigue syndrome: the human herpesviruses are back! // Biomolecules. 2021. Vol. 11. https://doi.org/10.3390/biom11020185.
67. Nikolskiy M.A., Golubcova V.S. Сhromosomaly integrated Human herpesvirus 6. Russian Journal of Infection and Immunity = Infektsiya i immunitet, 2015, Vol. 5, No. 1, pp. 7–14 (In Russ.). doi: 10.15789/2220-7619-2015-1-7-14.
68. Thomasini R.L., Pereira D.S., Pereira F.S.M., Mateo E.C., Mota T.N., Guimaraes G.G., Pereira L.S.M., Lima C.X., Teixeira M.M., Teixeira A.L.J. Aged-associated cytomegalovirus and Epstein-Barr virus reactivation and cytomegalovirus relationship with the frailty syndrome in older women // PLoS ONE. 2017. Vol. 12. e0180841. https://doi.org/10.1371/journal.pone.0180841.
69. Leskov I.L., Whitsett J., Vasquez-Vivar J., Stokes K.Y. NAD(P)H oxidase and eNOS play differential roles in cytomegalovirus infection-induced microvascular dysfunction // Free Radic Biol. Med. 2011. Vol. 51. Р. 2300–2308. https://doi.org/10.1016/j.freeradbiomed.2011.09.039.
70. Indari O., Tiwari D., Tanwar M., Kumar R., Jha H.C. Early biomolecular changes in brain microvascular endothelial cells under Epstein-Barr virus influence: a Raman microspectroscopic investigation // Integr. Biol. (Camb.). 2022. Vol. 14. Р. 89–97. https://doi.org/10.1093/intbio/zyac009.
71. Vallbracht K.B., Schwimmbeck P.L., Kuhl U., Seeberg B., Schultheiss H.P. Endothelium-dependent flow-mediated vasodilation of systemic arteries is impaired in patients with myocardial virus persistence // Circulation. 2004. Vol. 110. Р. 2938–2945. https://doi.org/10.1161/01.CIR.0000146891.31481.CF.
72. O’Connor S., Taylor C., Campbell L.A., Epstein S., Libby P. Potential infectious etiologies of atherosclerosis: a multifactorial perspective // Emerg. Infect. Dis. 2001. Vol. 7. Р. 780–788.
73. King C., Patel R., Mendoza C., Walker J.K., Wu E.Y., Moss P., Morgan M.D. O’Dell Bunch D., Harper L., Chanouzas D. Cytomegalovirus infection is a risk factor for venous thromboembolism in ANCA-associated vasculitis // Arthritis Res. Ther. 2022. Vol. 24. Р. 192. https://doi.org/10.1186/s13075-022-02879-7.
74. Caruso A., Rotola A., Comar M., Favilli F., Galvan M., Tosetti M., Campello C., Caselli E., Alessandri G., Grassi M. et al. HHV-6 infects human aortic and heart microvascular endothelial cells, increasing their ability to secrete proinflammatory chemokines // J. Med. Virol. 2002. Vol. 67. Р. 528–533. https://doi.org/10.1002/jmv.10133.
75. Gold J.E., Okyay R.A., Licht W.E., Hurley D.J. Investigation of long COVID prevalence and its relationship to Epstein-Barr virus reactivation // Pathogens. 2021. Vol. 10. https://doi.org/10.3390/pathogens10060763.
76. Cheng J., Ke Q., Jin Z., Wang H., Kocher O., Morgan J.P., Zhang J., Crumpacker C.S. Cytomegalovirus infection causes an increase of arterial blood pressure // PLoS Pathog. 2009. Vol. 5. e1000427. https://doi.org/10.1371/journal.ppat.1000427.
77. Firth C., Harrison R., Ritchie S., Wardlaw J., Ferro C.J., Starr J.M., Deary I.J., Moss P. Cytomegalovirus infection is associated with an increase in systolic blood pressure in older individuals // QJM. 2016. Vol. 109. Р. 595–600. https://doi.org/10.1093/qjmed/hcw026.
78. Weber S., Kehl V., Erber J., Wagner K.I., Jetzlsperger A.M., Burrell T., Schober K., Schommers P., Augustin M., Crowell C.S. et al. CMV seropositivity is a potential novel risk factor for severe COVID-19 in non-geriatric patients // PLoS One. 2022. Vol. 17. e0268530. https://doi.org/10.1371/journal.pone.0268530.
79. Fischer D.S., Ansari M., Wagner K.I., Jarosch S., Huang Y., Mayr C.H., Strunz M., Lang N.J., D’Ippolito E., Hammel M. et al. Single-cell RNA sequencing reveals ex vivo signatures of SARS-CoV-2-reactive T cells through ‘reverse phenotyping’ // Nat. Commun. 2021. Vol. 12. Р. 4515. https://doi.org/10.1038/s41467-021-24730-4.
80. Frozza F.T.B., Fazolo T., de Souza P.O., Lima K., da Fontoura J.C., Borba T.S., Polese-Bonatto M., Kern LB., Stein R.T., Pawelec G., Bonorino C. A high CMV-specific T cell response associates with SARS-CoV-2-specific IL-17 T cell production // Med. Microbiol. Immunol. 2023. Feb. Vol. 212, No. 1. Р. 75–91. doi: 10.1007/s00430-022-00758-1.
81. Altmann D.M., Whettlock E.M., Liu S., Arachchillage D.J., Boyton R.J. The immunology of long COVID // Nat. Rev. Immunol. 2023. Vol. 23. Р. 618–634. https://doi.org/10.1038/s41577-023-00904-7.
82. Liu Z., Hollmann C., Kalanidhi S., Grothey A., Keating S., Mena-Palomo I., Lamer S., Schlosser A., Kaiping A., Scheller C. et al. Increased circulating fibronectin., depletion of natural IgM and heightened EBV, HSV-1 reactivation in ME/CFS and long COVID // medRxiv. 2023. https://doi.org/10.1101/2023.06.23.23291827.
83. Muller L., Di Benedetto S. Immunosenescence and cytomegalovirus: exploring their connection in the context of aging, health, and disease // Int. J. Mol. Sci. 2024. Vol. 25. https://doi.org/10.3390/ijms25020753.
84. Mason G.M., Jackson S., Okecha G., Poole E., Sissons J.G., Sinclair J., Wills M.R. Human cytomegalovirus latency-associated proteins elicit immune-suppressive IL-10 producing CD4(+) T cells // PLoS Pathog. 2013. Vol. 9. e1003635. https://doi.org/10.1371/journal.ppat.1003635.
85. Lebedeva A., Maryukhnich E., Grivel J.C., Vasilieva E., Margolis L., Shpektor A. Productive cytomegalovirus infection is associated with impaired endothelial function in ST-elevation myocardial infarction // Am. J. Med. 2020. Vol. 133. Р. 133–142. https://doi.org/10.1016/j.amjmed.2019.06.021.
86. Gerna G., Lilleri D., Fornara C., d’Angelo P., Baldanti F. Relationship of human cytomegalovirus-infected endothelial cells and circulating leukocytes in the pathogenesis of disseminated human cytomegalovirus infection: a narrative review // Rev. Med. Virol. 2024. Vol. 34. e2496. https://doi.org/10.1002/rmv.2496.
87. Charfeddine S., Ibn Hadj Amor H., Jdidi J., Torjmen S., Kraiem S., Hammami R., Bahloul A., Kallel N., Moussa N., Touil I. et al. Long COVID-19 syndrome: is it related to microcirculation and endothelial dysfunction? Insights from TUN-EndCOV study // Front Cardiovasc. Med. 2021. Vol. 8. Р. 745758. https://doi.org/10.3389/fcvm.2021.745758.
88. Blomberg J., Rizwan M., Bohlin-Wiener A., Elfaitouri A., Julin P., Zachrisson O., Rosen A., Gottfries C.G. Antibodies to human herpesviruses in myalgic encephalomyelitis/chronic fatigue syndrome patients // Front Immunol. 2019. Vol. 10. Р. 1946. https://doi.org/10.3389/fimmu.2019.01946.
89. Chapenko S., Krumina A., Logina I., Rasa S., Chistjakovs M., Sultanova A., Viksna L., Murovska M. Association of active human herpesvirus-6, -7 and parvovirus b19 infection with clinical outcomes in patients with myalgic encephalomyelitis/chronic fatigue syndrome // Adv. Virol. 2012. Vol. 2012. 205085. https://doi.org/10.1155/2012/205085.
90. Nunn A.V.W., Guy G.W., Botchway S.W., Bell J.D. SARS-CoV-2 and EBV: the cost of a second mitochondrial «whammy»? // Immun. Ageing. 2021. Vol. 18. Р. 40. https://doi.org/10.1186/s12979-021-00252-x.
91. Peluso M.J., Deveau T.M., Munter S.E., Ryder D., Buck A., Beck-Engeser G., Chan F., Lu S., Goldberg S.A., Hoh R. et al. Chronic viral coinfections differentially affect the likelihood of developing long COVID // J. Clin. Invest. 2023. Vol. 133. https://doi.org/10.1172/JCI163669.
92. Hoeggerl A.D., Nunhofer V., Lauth W., Badstuber N., Held N., Zimmermann G., Grabmer C., Weidner L., Jungbauer C., Lindlbauer N. et al. Epstein-Barr virus reactivation is not causative for post-COVID-19-syndrome in individuals with asymptomatic or mild SARS-CoV-2 disease course // BMC Infect. Dis. 2023. Vol. 23. Р. 800. https://doi.org/10.1186/s12879-023-08820-w.
93. Kosyakova N.I. Herpesvirus epstein-barr virus infection and postcovid-19 syndrome. International Journal of Applied and Fundamental research, 2024, No. 3, pр. 16–21 (In Russ.).
94. Damania B., Kenney S.C., Raab-Traub N. Epstein-Barr virus: Biology and clinical disease // Cell. 2022. Sep 29. Vol. 185, No. 20, рр. 3652–3670. doi: 10.1016/j.cell.2022.08.026.
95. Brooks B., Tancredi C., Song Y., Mogus A.T., Huang M.W., Zhu H., Phan T.L., Zhu H., Kadl A., Woodfolk J. et al. Epstein-Barr virus and human herpesvirus-6 reactivation in acute COVID-19 patients // Viruses. 2022. Vol. 14. https://doi.org/10.3390/v14091872.
96. Akhyani N., Berti R., Brennan M.B., Soldan S.S., Eaton J.M., McFarland H.F., Jacobson S. Tissue distribution and variant characterization of human herpesvirus (HHV-6) increased prevalence of HHV-6A in patients with multiple sclerosis // J. Infect. Dis. 2000. Vol. 182. Р. 1321–1325. doi: 10.1086/315893.
97. Williams M.V., Cox B., Ariza M.E. Herpesviruses dUTPases: a new family of pathogen-associated molecular pattern (PAMP) proteins with implications for human disease // Pathogens. 2016. Vol. 6. https://doi.org/10.3390/pathogens6010002.
98. Maltsev D. A comparative study of valaciclovir, valganciclovir, and artesunate efficacy in reactivated HHV-6 and HHV-7 infections associated with chronic fatigue syndrome/myalgic encephalomyelitis // Microbiol. Immunol. 2022. Vol. 66. Р. 193–199. https://doi.org/10.1111/1348-0421.12966.
Review
For citations:
Boeva E.V., Rassokhin V.V., Norka A.O., Knizhnikova A.A., Korobova Z.R., Arsent’yeva N.A., Ivanova A.R., Klementev А.M., Belyakov N.A. Editorial article based on the results of the study human herpes virus reactivation in the pathogenesis of long COVID. HIV Infection and Immunosuppressive Disorders. 2025;17(2):7-23. (In Russ.) https://doi.org/10.22328/2077-9828-2025-17-2-7-23