Preview

ВИЧ-инфекция и иммуносупрессии

Расширенный поиск

ИММУНОПАТОГЕНЕЗ И ПЕРСПЕКТИВЫ ИММУНОМОДУЛИРУЮЩЕЙ ТЕРАПИИ ВИЧ-ИНФЕКЦИИ. ЧАСТЬ 1. ОБЩИЕ ВОПРОСЫ ИММУНОЛОГИИ И ВИЧ1

https://doi.org/10.22328/2077-9828-2017-9-1-22-35

Полный текст:

Аннотация

Инфицирование вирусом иммунодефицита человека ведет к снижению числа и нарушению функций Т-лимфоцитов, приводя к формированию иммунодефицитного состояния, развитию оппортунистических инфекций и рака. Парадокс инфекции вирусом иммунодефицита человека связан с одновременной активацией иммунной системы, главным образом врожденного иммунитета и синтеза цитокинов с развитием хронического системного воспаления. Иммунный ответ против данного вируса развивается сразу после инфицирования, но неэффективен для удаления вируса из организма, в том числе из-за активного противодействия самого вируса. Антиретровирусная терапия подавляет репликацию вируса иммунодефицита человека до минимального уровня и частично восстанавливает работу иммунной системы, однако у ряда больных это приводит к серьезным осложнениям в виде развития воспалительного синдрома иммунного восстановления (immunereconstitution  inflammatorysyndrome, IRIS). Иммунотерапия при инфекции вирусом иммунодефицита человека направлена на предотвращение инфицирования и распространения вируса путем профилактической и лечебной вакцинации, в том числе пассивной вакцинации широко нейтрализующими моноклональными антителами и антихемокиновыми препаратами, а также на восстановление нарушенного иммунитета и коррекцию осложнений.

Об авторе

А. С. Симбирцев
Государственный Научно-исследовательский институт особо чистых биопрепаратов
Россия

Симбирцев  Андрей  Семенович  — член-корреспондент РАН, зам. директора по научной работе.

197110, Санкт-Петербург, Пудожская ул., 7, тел.: +7 (812) 235-12-25, е-mail: simbirtsev@hpb-spb.com



Список литературы

1. Berger E., Murphy P., Farber J. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol., 1999, Vol. 17, рр. 657–700.

2. Schols D. HIV co-receptors as targets for antiviral therapy. Curr. Top. Med. Chem., 2004, Vol. 4, рр. 883–893.

3. Lucas S., Nelson A. HIV and the spectrum of human disease. J. Pathol, 2015, Vol. 235, рр. 229–241.

4. Pantaleo G., Graziosi C., Demarest J., Butini L., Montroni M., Fox C.H., Orenstein J.M., Kotler D.P., Fauci A.S. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature, 1993, Vol. 362, рр. 355–358.

5. Doitsh G., Galloway N., Geng X., Yang Z., Monroe K.M., Zepeda O. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature, 2014, Vol. 505, рр. 509–514.

6. Stacey A., Norris P., Qin L., Haygreen E.A., Taylor E., Heitman J. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J. Virol., 2009, Vol. 83, рр. 3719–3733.

7. Murray H., Rubin B., Mazur H., Roberts R. Impaired production of lymphokines and immune (gamma) interferon in the acquired immunodeficiency syndrome. N. Eng. J. Med., 1984, Vol. 310, рр. 883–889.

8. Meyaard L., Hovenkamp E., Keet I., Hooibrink B., de Jong I.H., Otto S.A., Single cell analysis of IL-4 and IFN-gamma production by T cells from HIV-infected individuals: decreased IFN-gamma in the presence of preserved IL-4 production. J. Immunol., 1996, Vol. 157, рр. 2712–2718.

9. Giorgi J., Liu Z., Hultin L. Cumberland W.G., Hennessey K., Detels R. Elevated levels of CD38+ CD8+ T cells in HIV infection add to the prognostic value of low CD4+ T cell levels: results of 6 years of follow-up. The Los Angeles Center, Multicenter AIDS Cohort Study. J. Acquir. Immune Defic. Syndr., 1993, Vol. 6, рр. 904–912.

10. Fahey J., Taylor J., Manna B., Nishanian P., Aziz N., Giorgi J.V. Prognostic significance of plasma markers of immune activation, HIV viral load and CD4+ T-cell measurements. AIDS. 1998, Vol. 12, рр. 1581–1590.

11. Nilsson J., Boasso A., Velilla P., Zhang R., Vaccari M., Franchini G., Shearer G.M., Andersson J., Chougne C. HIV-1-driven regulatory T-cell accumulation in lymphoid tissues is associated with disease progression in HIV/AIDS. Blood, 2006, Vol. 108, рр. 3808–3817.

12. Bi X., Suzuki Y., Gatanaga H., Oka S. High frequency and proliferation of CD4+ FOXP3+ Treg in HIV-1-infected patients with low CD4 counts. Eur. J. Immunol., 2009, Vol. 39, рр. 301–309.

13. Presicce P., Orsborn K., King E., Pratt J., Fichtenbaum C.J. Frequency of circulating regulatory T cells increases during chronic HIV infection and is largely controlled by highly active antiretroviral therapy. PLoS One., 2011, Vol. 6 (12), рр. e28118.

14. Thorborn G., Pomeroy L., Isohanni H., Perry M., Peters B., Vyakarnam A. Increased sensitivity of CD4+ T-effector cells to CD4+CD25+ Treg suppression compensates for reduced Treg number in asymptomatic HIV-1 infection. PLoS One., 2010, Vol. 5 (2), рр. e9254.

15. Simonetta F., Lecuroux C., Girault I., Goujard C., Sinet M., Lambotte O. Early and long-lasting alteration of effector CD45RA(-)Foxp3(high) regulatory T-cell homeostasis during HIV infection. J. Infect. Dis., 2012, Vol. 205, рр. 1510–1519.

16. Pion M., Jaramillo-Ruiz D., Martinez A., Muñoz-Fernández M.A., Correa-Rocha R. HIV infection of human regulatory T cells downregulates Foxp3 expression by increasing DNMT3b levels and DNA methylation in the FOXP3 gene. AIDS, 2013, Vol. 27, рр. 2019–2029.

17. López-Abente J., Correa-Rocha R., Pion M. Functional Mechanisms of Treg in the Context of HIV Infection and the Janus Face of Immune Suppression. Front. Immunol., 2016, Vol. 7, рр. 192–207.

18. Chomont N., El-Far M., Ancuta P., Trautmann L., Procopio F., Yassine-Diab B. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med., 2009, Vol. 15, рр. 893–900.

19. Ruelas D., Greene W. An integrated overview of HIV-1 latency. Cell, 2013, Vol. 155, рр. 519–529.

20. Ananworanich J., Chomont N., Eller L. HIV DNA set point is rapidly established in acute HIV infection and dramatically reduced by early ART. EBioMedicine, 2016, Vol. 11, рр. 68–72.

21. Zeng M., Haase A., Schacker T. Lymphoid tissue structure and HIV-1 infection: life or death for T cells. Trends Immunol., 2012, Vol. 33, рр. 306–314.

22. Sabri F., Prados A., Muñoz–Fernández R., Lantto R., Fernandez-Rubio P., Nasi A. Impaired B cells survival upon production of inflammatory cytokines by HIV-1 exposed follicular dendritic cells. Retrovirology, 2016, Vol. 13, рр. 61–77.

23. Cubas R., Mudd J., Savoye A., Perreau M., van Grevenynghe J., Metcalf T., Connick E., Meditz A., Freeman G.J., Abesada-Terk G.-Jr., Jacobson J.M., Brooks A.D., Crotty S., Estes J.D. Inadequate T follicular cell help impairs B cell immunity during HIV infection. Nat. Med., 2013, Vol. 19, рр. 494–499.

24. Bharaj P., Chahar H., Alozie O., Rodarte L., Bansal A., Goepfert P.A., Dwivedi A., Manjunath N., Shankar P. Characterization of programmed death-1 homologue-1 (PD-1H) expression and function in normal and HIV infected individuals. PLoS One, 2014, Vol. 9, рр. e109103.

25. French M., Cozzi-Lepri A., Arduino R., Johnson M., Achhra A.C., Landay A. Plasma levels of cytokines and chemokines and the risk of mortality in HIV-infected individuals: a case-control analysis nested in a large clinical trial. AIDS, 2015, Vol. 29, рр. 847–851.

26. Liang H., Duan Z., Li D., Li D., Wang Z., Ren L., Shen T., Shao Y. Higher levels of circulating monocyte-platelet aggregates are correlated with viremia and increased sCD163 levels in HIV-1 infection. Cell. Mol. Immunol., 2015, Vol. 12, рр. 435–443.

27. Verollet C., Souriant S., Bonnaud E., Jolicoeur P., Raynaud-Messina B., Kinnaer C., Fourquaux I., Imle A., Benichou S., Fackler O.T. HIV-1 reprograms the migration of macrophages. Blood, 2015, Vol. 125, рр. 1611–1622.

28. McIlroy D., Autran B., Cheynier R., Wain-Hobson S., Clauvel J.P., Oksenhendler E. Infection frequency of dendritic cells and CD4+ T-lymphocytes in spleens of human immunodeficiency virus-positive patients. J. Virol., 1995, Vol. 69, рр. 4737–4745.

29. Smed-Sorensen A., Lore K., Vasudevan J., Louder M.K., Andersson J., Mascola J.R., Spetz A.L., Koup R.A. Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. J. Virol., 2005, Vol. 79, рр. 8861–8869.

30. Geijtenbeek T., Kwon D., Torensma R., van Vliet S.J., van Duijnhoven G.C., Middel J., Cornelissen I.L., Nottet H.S., KewalRamani V.N., Littman D.R., Figdor C.G., van Kooyk Y. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell, 2000, Vol. 100, рр. 587–597.

31. O’Brien M., Manches O., Bhardwaj N. Plasmacytoid dendritic cells in HIV infection. Adv. Exp. Med. Biol., 2013, Vol. 762, рр. 71–107.

32. Servet C., Zitvogel L., Hosmalin A. Dendritic cells in innate immune responses against HIV. Curr. Mol. Med., 2002, Vol.2, рр. 739–756.

33. Dhamanage A., Thakar M., Paranjape R. Human Immunodeficiency Virus-1 Impairs IFN-Alpha Production Induced by TLR-7 Agonist in Plasmacytoid Dendritic Cells. Viral Immunol., 2017, Vol. 30 (1), рр. 28–34. doi:10.1089/vim.2016.0084.

34. Hubbard J., Greenwell-Wild T., Barrett L., Yang J., Lempicki R.A., Wahl S.M., Asmuth D.M. Host gene expression changes correlating with anti-HIV-1 effects in human subjects after treatment with peginterferon Alfa-2a. J. Infect. Dis., 2012, Vol. 205, рр. 1443–1447.

35. Doyle T., Goujon C., Malim M. HIV-1 and interferons: who’s interfering with whom? Nat. Rev. Microbiol., 2015, Vol. 13. P. 403–413.

36. Drappier M., Michiels T. Inhibition of the OAS/RNase L pathway by viruses. Curr. Opin. Virol., 2015, Vol. 15, рр. 19–26.

37. Pitha P. Multiple effects of interferon on the replication of human immunodeficiency virus type 1. Antiviral Res., 1994, Vol. 24, рр. 205–219.

38. Sheehy A., Gaddis N., Choi J., Malim M.H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature, 2002, Vol. 418, рр. 646–650.

39. Neil S., Zang T., Bieniasz P. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature, 2008, Vol. 451, рр. 425–430.

40. Tomescu C., Mavilio D., Montaner L. Lysis of HIV-1-infected autologous CD4+ primary T cells by interferon-alpha-activated NK cells requires NKp46 and NKG2D. AIDS. 2015. Vol. 29, рр. 1767–1773.

41. Tomescu C., Abdulhaqq S., Montaner L. Evidence for the innate immune response as a correlate of protection in human immunodeficiency virus (HIV)-1 highly exposed seronegative subjects (HESN). Clin. Exp. Immunol., 2011, Vol. 164, рр. 158–169.

42. Bosinger S., Utay N. Type I interferon: understanding its role in HIV pathogenesis and therapy. Curr. HIV/AIDS Rep., 2015, Vol. 12, рр. 41–53.

43. Sandler N., Bosinger S., Estes J., Zhu R.T., Tharp G.K., Boritz E., Levin D., Wijeyesinghe S., Makamdop K.N., del Prete G.Q. Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature,. 2014, Vol. 511, рр. 601–605.

44. Guadalupe M., Reay E., Sankaran S., Prindiville T., Flamm J., McNeil A., Dandekar S. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J. Virol., 2003, Vol. 77, рр. 11708–11717.

45. Pitha P. Innate antiviral response: role in HIV-1 infection. Viruses, 2011, Vol. 3, рр. 1179–1203.

46. Huang X., Liu X., Meyers K., Liu L., Su B., Wang P., Li Z., Li L., Zhang T., Li N., Chen H., Li H., Wu H. Cytokine cascade and networks among MSM HIV seroconverters: implications for early immunotherapy. Sci. Rep., 2016, Vol. 6, рр. 36 234.

47. Saing T., Valdivia A., Hussain P. Data on pro-inflammatory cytokines IL-1β, IL-17, and IL-6 in the peripheral blood of HIV-infected individuals. Data Brief., 2016, Vol. 8, рр. 1044–1047.

48. Kumar A., Abbas W., Herbein G. TNF and TNF receptor superfamily members in HIV infection: new cellular targets for therapy? Mediators Inflamm., 2013, Vol. 2013, рр. e484378.

49. Varin A., Manna S., Quivy V. Exogenous Nef protein activates NFB, AP-1, and c-Jun N-terminal kinase and stimulates HIV transcription in promonocytic cells: role in AIDS pathogenesis. J. Biol. Chem., 2003, Vol. 278, рр. 2219–2227.

50. Varin A., Decrion A., Sabbah E., Quivy V., Sire J., Van Lint C., Roques B.P., Aggarwal B.B., Herbein G. Synthetic Vpr protein activates activator protein-1, c-Jun N-terminal kinase, and NFB and stimulates HIV-1 transcription in promonocytic cells and primary macrophages. J. Biol. Chem., 2005, Vol. 280, рр. 42557–42567.

51. Herbein G., Khan K. Is HIV infection a TNF receptor signalling-driven disease? Trends Immunol., 2008, Vol. 29, рр. 61–67.

52. Gallitano S., McDermott L., Brar K., Lowenstein E. Use of tumor necrosis factor (TNF) inhibitors in patients with HIV/AIDS. J. Am. Acad. Dermatol, 2016, Vol. 74, рр. 974–980.

53. Brenchley J., Paiardini M., Knox K. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood, 2008, Vol. 112, рр. 2826–2835.

54. Page E., Greathead L., Metcalf R. Loss of Th22 cells is associated with increased immune activation and IDO-1 activity in HIV-1 infection. J. Acquir. Immune Defic. Syndr., 2014, Vol. 67, рр. 227–235.

55. Briceño O., Pinto-Cardoso S., Rodríguez-Bernabe N., Murakami-Ogasawara A., Reyes-Terán G. Gut Homing CD4+ and CD8+ T-Cell Frequencies in HIV Infected Individuals on Antiretroviral Treatment. PLoS ONE, 2016, Vol. 11, рр. 0166496.

56. Cocchi F., DeVico A., Garzino-Demo A., Garzino-Demo A., Arya S.K., Gallo R.C., Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science, 1995, Vol. 270, рр. 1811–1815.

57. Vicenzi E., Lio P., Poli G. The puzzling role of CXCR4 in human immunodeficiency virus infection. Theranostics, 2013, Vol. 3, рр. 18–25.

58. Fantuzzi L., Belardelli F., Gessani S. Monocyte/macrophage-derived CC chemokines and their modulation by HIV-1 and cytokines: a complex network of interactions influencing viral replication and AIDS pathogenesis. J. Leukoc. Biol., 2003, Vol. 74, рр. 719–725.

59. Covino D., Sabbatucci M., Fantuzzi L. The CCL2/CCR2 Axis in the Pathogenesis of HIV-1 Infection: A New Cellular Target for Therapy? Current Drug Targets, 2016, Vol. 17, рр. 76–110.

60. Maartens G., Celum C., Lewin S. HIV infection: epidemiology, pathogenesis, treatment and prevention. Lancet, 2014, Vol. 384, рр. 258–271.

61. Ipp H., Zemlin A., Erasmus R., Glashoff R.H. Role of inflammation in HIV-1 disease progression and prognosis. Crit. Rev. Clin. Lab. Sci., 2014, Vol. 51, рр. 98–111.

62. Jin X., Bauer D., Tuttleton S., Lewin S., Gettie A., Blanchard J., Irwin C.E., Safrit J.T., Mittler J.,Weinberger L., Kostrikis L.G., Zhang L. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med., 1999, Vol. 189, рр. 991–998.

63. Makedonas G., Betts M. Living in a house of cards: re-evaluating CD8+ T-cell immune correlates against HIV. Immunol. Rev., 2011, Vol. 239, рр. 109–124.

64. Betts M., Nason M., West S., De Rosa S., Miguele S., Abraham J. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood, 2006, Vol. 107, рр. 4781–4789.

65. Akinsiku O., Bansal A., Sabbaj S., Heath S., Goepfert P. Interleukin-2 production by polyfunctional HIV-1-specific CD8 T cells is associated with enhanced viral suppression. J. Acq. Imm. Def. Syndromes, 2011, Vol. 58, рр. 132–140.

66. Gray E., Madiga M., Hermanus T., Moore P.L., Wibmer C.K., Tumba N.L. The neutralization breadth of HIV-1 develops incrementally over four years and is associated with CD4+ T cell decline and high viral load during acute infection. J. Virol., 2011, Vol. 85, рр. 4828–4840.

67. Simek M., Rida W., Priddy F., Pung P., Carrow E., Laufer D.S., Lehrman J.K., Boaz M., Tarragona-Fiol T., Miiro G. Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J. Virol., 2009, Vol. 83, рр. 7337–7348.

68. Huang J., Kang B., Pancera M., Lee J.H., Tong T., Feng Y., Imamichi H., Georgiev I.S., Chuang G.Y., Druz A. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface. Nature, 2014, Vol. 515, рр. 138–142.

69. Burton D., Mascola J. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat. Immunol, 2015, Vol. 16, рр. 571–576.

70. Shingai M., Donau O., Plishka R., Buckler-White A., Mascola J.R., Nabel G.J., Nason M.C., Montefiori D., Moldt B., Poignard P., Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. J. Exp. Med., 2014, Vol. 211, рр. 2061–2074.

71. Klein F., Halper-Stromberg A., Horwitz J., Gruell H., Scheid J.F., Bournazos S., Mouquet H., Spatz L.A., Diskin R., Abadir A. HIV therapy by a combination of broadly neutralizing antibodies in humanized mice, Nature, 2012, Vol. 492, рр. 118–122.

72. Bournazos S., Klein F., Pietzsch J., Pietzsch J., Seaman M.S., Nussenzweig M.C., Ravetch J.V. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity. Cell., 2014, Vol. 158, рр. 1243–1253.

73. Stoiber H., Banki Z., Wilflingseder D., Dierich M. Complement–HIV interactions during all steps of viral pathogenesis. Vaccine, 2008, Vol. 26, рр. 3046–3054.

74. Ellegard R., Crisci E., Burgener A., Sjöwall C., Birse K., Westmacott G., Hinkula J., Lifson J.D., Larsson M. Complement opsonization of HIV-1 results in decreased antiviral and inflammatory responses in immature dendritic cells via CR3. J. Immunol., 2014, Vol. 193, рр. 4590–4601.

75. McLaren P., Carrington M. The impact of host genetic variation on infection with HIV-1. Nat. Immunol., 2015, Vol. 16, рр. 577–583.

76. Horton R., McLaren P., Fowke K., Kimani J., Ball T.B. Cohorts for the study of HIV-1-exposed but uninfected individuals: benefits and limitations, J. Infect. Dis., 2010, Vol. 202, рр. 377–381.

77. Liu H., Hwangbo Y., Holte S., Lee J., Wang C., Kaupp N., Zhu H., Celum C., Corey L., McElrath M.J., Zhu T. Analysis of genetic polymorphisms in CCR5, CCR2, stromal cell-derived factor-1, RANTES, and dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin in seronegative individuals repeatedly exposed to HIV-1. J. Infect. Dis. 2004, Vol. 190, рр. 1055–1058.

78. Carrington M., O’Brien S. The influence of HLA genotype on AIDS. Annu. Rev. Med, 2003, Vol. 54, рр. 535–551.

79. Martin M.P., Carrington M. Immunogenetics of HIV disease. Immunol. Rev. 2013. Vol. 254, рр. 245–264.

80. Migueles S., Connors M. Success and failure of the cellular immune response against HIV-1. Nat. Immunol, 2015, Vol. 16, рр. 563–570.

81. Dyer W., Zaunders J., Yuan F., Wang B., Learmont J.C., Geczy A.F., Saksena N.K., McPhee D.A., Gorry P.R., Sullivan J.S. Mechanisms of HIV non-progression; robust and sustained CD4+ T-cell proliferative responses to p24 antigen correlate with control of viraemia and lack of disease progression after long-term transfusion-acquired HIV-1 infection. Retrovirology, 2008, Vol. 5, рр. 112–118.

82. Ferre A., Hunt P., Critchfield J., Young D.H., Morris M.M., Garcia J.C., Pollard R.B., Yee H., Martin J., Deeks S.G. Mucosal immune responses to HIV-1 in elite controllers:a potential correlate of immune control. Blood, 2009, Vol. 113, рр. 3978–3989.


Для цитирования:


Симбирцев А.С. ИММУНОПАТОГЕНЕЗ И ПЕРСПЕКТИВЫ ИММУНОМОДУЛИРУЮЩЕЙ ТЕРАПИИ ВИЧ-ИНФЕКЦИИ. ЧАСТЬ 1. ОБЩИЕ ВОПРОСЫ ИММУНОЛОГИИ И ВИЧ1. ВИЧ-инфекция и иммуносупрессии. 2017;9(1):22-35. https://doi.org/10.22328/2077-9828-2017-9-1-22-35

For citation:


Simbirtsev A.S. IMMUNOPATHOGENESIS OF AND PROSPECTS FOR IMMUNOMODULATORY THERAPY FOR HIV INFECTION. PART 1. THE GENERAL ASPECTS OF IMMUNOLOGY AND HIV. HIV Infection and Immunosuppressive Disorders. 2017;9(1):22-35. (In Russ.) https://doi.org/10.22328/2077-9828-2017-9-1-22-35

Просмотров: 1372


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2077-9828 (Print)