Preview

HIV Infection and Immunosuppressive Disorders

Advanced search

MATHEMATICAL MODELING OF EPIDEMIOLOGICAL AND BIOLOGICAL HIV INFECTION PROCESSES

https://doi.org/10.22328/2077-9828-2017-9-2-58-67

Abstract

In this paper analyzed the publications of international databases HighWire, PubMed, Google Scholar in the period 1981–2016 years. Proposed an original classification models. All the basic mathematical models developed for the human immunodeficiency virus are categorized into 2 levels: organism and population. The organism level is divided into models of virus and human interaction (HIV replication, study of the kinetics of viral population in the development of the disease, the molecular mechanisms of inte- raction with immune cells) and models of the inhibitory effect of anti-retroviral drugs (simulations of different therapeutic schemes, the development of resistance mutations HIV in cell reservoirs, treatment as a preventive measure). The population level can be divided into models of spread of HIV in a population (the circulation of different genotypes of HIV, the analysis of human population structure by age, sex and risk of contingent and trends in different geographical areas, the study of factors contributing to the spread of HIV infection) and management models, making the most effective use of health care system resources for the counteract the epidemic (preventive work analysis, evaluation of the economic costs of screening, therapeutic activities, forecasting the socio-eco- nomic impact). The authors consider the most significant achievements of each of these groups, and highlight unresolved problems

About the Authors

D. A. Neshumaev
Krasnoyarsk Regional Aids Center
Russian Federation


E. N. Sucharev
Reshetnev Siberian State Aerospace University
Russian Federation


V. L. Stasenko
Omsk State Medical University
Russian Federation


References

1. Daelemans D., Costes S.V., Cho E.H., Erwin-Cohen R.A., Lockett S., Pavlakis G.N. In vivo HIV-1 rev multimerization in the nucleolus and cyto- plasm identified by fluorescence resonance energy transfer. J. Biol. Chem., 2004, Vol. 279, No. 48, pp. 50167–50175.

2. Tsiang M., Jones G.S., Hung M., Mukund S., Han B., Liu X., Babaoglu K. Affinities between the Binding Partners of the HIV-1 Integrase Dimer-Lens Epithelium-derived Growth Factor (IN Dimer-LEDGF) Complex. J. Biol. Chem., 2009, Vol. 284, pp. 33580–33599.

3. Goonetilleke N., Liu M.K., Salazar-Gonzalez J.F., Salazar G.M.G., Weinhold K.J., Moore S. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J. Exp. Med., 2009, Vol. 206, pp. 1253–1272.

4. Salimi H., Roche M., Webb N., Gray L.R., Chikere K., Sterjovski J., Ellett A. Macrophage-tropic HIV-1 variants from brain demonstrate altera- tions in the way gp120 engages both CD4 and CCR5. J. Leukoc. Biol., 2013, Vol. 93, pp.113–126.

5. Schlub T.E., Grimm A.J., Smyth R.P., Cromer D., Chopra A., Mallal S. Fifteen to twenty percent of HIV substitution mutations are associated with recombination. J. Virol., 2014, Vol. 88, pp. 3837–3849.

6. Song H., Pavlicek J.W., Cai F., Bhattacharya T., Li H., Iyer S.S., Bar K.J. Impact of immune escape mutations on HIV-1 fitness in the context of the cognate transmitted/founder genome. Retrovirology, 2012, Vol. 9, pp. 89–103.

7. Rodrigo A.G., Shpaer E.G., Delwart E.L., Iversen A.K.N., Gallo M.V., Brojatsch J., Hirsch M.S. Coalescent estimates of HIV-1 generation time in vivo. Proc. Nati. Acad. Sci., USA, 1999, Vol. 96, pp. 2187–2191.

8. Burg D., Rong L., Neumann A.U., Dahari H. Mathematical modeling of viral kinetics under immune control during primary HIV-1 infection. J. Theor. Biol., 2009, Vol. 259, No. 4, pp. 751–759.

9. Alizon S., Magnus C. Modelling the course of an HIV infection: insights from ecology and evolution. Viruses, 2012, Vol. 4, No. 10, pp. 1984– 2013.

10. Pawelek K.A., Liu S., Pahlevani F., Rong L. A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data. Math. Biosci., 2012, Vol. 235, No. 1, pp. 98–109.

11. Smith N., Mlcochova P., Watters S.A., Aasa-Chapman M.M., Rabin N., Moore S. Proof-of-principle for immune control of global HIV-1 reacti- vation in vivo. Clin. Infect. Dis., 2015, Vol. 61, pp. 120–128.

12. Zarei H., Kamyad A.V., Heydari A.A. Fuzzy modeling and control of HIV infection. Comput. Math. Methods Med., 2012, Vol. 2012, pp. 1–17.

13. Dolezal J., Hraba T. Mathematical modelling of chemotherapy in HIV infection. Folia Biologica, 1994, Vol. 40, No. 3, pp. 103–111.

14. Donahue D.A., Sloan R.D., Bjorn D.K. Stage-Dependent Inhibition of HIV-1 Replication by Antiretroviral Drugs in Cell Culture. Antimicrob. Agents Chemother., 2010, Vol. 54, No. 3, pp. 1047–1054.

15. Vergu E., Mallet A., Golmard J.-L. Available clinical markers of treatment outcome integrated in mathematical models to guide therapy in HIV infection. J. Antimicrob. Chemother., 2004, Vol. 53, pp. 140–143.

16. Fung I.C.-H., Gambhir M., Sighem A., de Wolf F., Garnett G.P. The clinical interpretation of viral blips in HIV patients receiving antiviral trea- tment: are we ready to infer poor adherence? J. Acquir. Immune Defic. Syndr., 2012, Vol. 60, No. 1, pp. 5–11.

17. Perelson A.S., Deeks S.G. Drug effectiveness explained: the mathematics of antiviral agents for HIV. Sci. Transatlantional Med., 2011, Vol. 3, No. 91, pp. 30.

18. Supervie V., García-Lerma J.G., Heneine W., Blower S. HIV, transmitted drug resistance, and the paradox of preexposure prophylaxis. Proc. Nati. Acad. Sci., USA, 2010, Vol. 107, pp. 12381–12386.

19. Guo D., Zhang G., Wysocki T.A., Wysocki B.J., Gelbard H.A., Liu X.M. Endosomal trafficking of nanoformulated antiretroviral therapy facilitates drug particle carriage and HIV clearance. J. Virol., 2014, Vol. 88, pp. 9504–9513.

20. Petravic J., Martyushev A., Reece J.C., Kent S.J., Davenport M.P. Modeling the timing of antilatency drug administration during HIV treatment. J. Virol., 2014, Vol. 88, pp. 14050–14056.

21. Glaubius R.L., Parikh U.M., Hood G., Penrose K.J., Parikh U.M., Mellors J.W., Bendavid E., Abbas U.L. Deciphering the effects of injectable pre-exposure prophylaxis for combination HIV prevention. Open Forum Infect. Dis., 2016, Vol. 10, pp. 1093–1127.

22. Frank M., Kleist M., Kunz A., Harms G., Schütte C. Quantifying the impact of nevirapine-based prophylaxis strategies to prevent mother-to-child transmission of HIV-1: a combined pharmacokinetic, pharmacodynamic, and viral dynamic analysis to predict clinical outcomes. Antimicrob. Agents Chemother., 2011, Vol. 55, No. 12, pp. 5529–5540.

23. Беляков Н.А., Розенталь В.В., Дементьева Н.Е., Виноградова Т.Н., Сизова Н.В. Моделирование и общие закономерности циркуляции суб- типов и рекомбинантных форм ВИЧ // ВИЧ-инфекция и иммуносупрессии. 2012. Т. 4, № 2. С. 7–18. [Belyakov N.A., Rosental V.V., Dementjeva N.E., Vinogradova T.N., Sizova N.V. Mathematical modelling and general trends of circulation of HIV subtypes and recombinant forms. HIV Infection and Immunosuppressive Disorders, 2012, Vol. 4, No. 2, рр. 7–18 (In Russ.)].

24. May R., Anderson R.M. Transmission dinamics of HIV infection. Nature, 1987, Vol. 326, pp. 137–142.

25. Романюха А.А., Носова Е.А. Модель распространения ВИЧ-инфекции в результате социальной дезадаптации // Управление большими системами, 2011. Выпуск 34. М.: ИПУ РАН. С. 227–253. [Romanyukha A.A., Nosova E.A. Model of the spread of HIV infection as a result of social disadaptation. Management of Large Systems, 2011, Issue 34, Moscow: IPP RAS, рр. 227–253 (In Russ.)].

26. Wallace R. Social disintegration and the spread of AIDS: thresholds for propagation along «sociogeographic» networks. Soc. Sci. Med., 1991, Vol. 33, No. 10, pp. 1155–1162.

27. Greenhalgh D., Hay G. Mathematical modelling of the spread of HIV/AIDS amongst injecting drug users. Math. Med. Biol., 1995, Vol. 14, No. 1, pp. 11–38.

28. Vickerman P., Ndowa F., O’Farrell N., Steen R., Alary M., Delany-Moretlwe S. Using mathematical modelling to estimate the impact of periodic presumptive treatment on the transmission of sexually transmitted infections and HIV among female sex workers. Sex. Transm. Infect., 2010, Vol. 86, pp. 163–168.

29. Sighem A., Vidondo B., Glass T.R., Bucher H.C., Vernazza P., Gebhardt M. Resurgence of HIV infection among men who have sex with men in Switzerland: mathematical modelling study. PLoS, 2012, Vol. 7, No. 9, pp. e44819.

30. Quinlivan E.B., Patel S.N., Grodensky C.A., Golin C.E., Tien H., Hobbs M.M. Modeling the impact of Trichomonas vaginalis infection on HIV transmission in HIV-infected individuals in medical care. Sex. Transm. Dis., 2012, Vol. 39, No. 9, pp. 671–677.

31. Ronn M., Garnett G., Hughes G. et al. Lymphogranuloma venereum, HIV and high-risk behaviour: findings from LGV enhanced surveillance and mathematical modeling. Sex. Transm. Infect., 2011, Vol. 87, pp. A48.

32. Mills H.L., Cohen T., Colijn C. Modelling the performance of isoniazid preventive therapy for reducing tuberculosis in HIV endemic settings: the effects of network structure. J. R. Soc. Interface, 2011, Vol. 8, pp. 1510–1520.

33. Akra O.M., Oyejola B.A. Mathematical modeling of the epidemiology and the transmission dynamics of HIV/AIDS infections in Nigeria. Afr. J. Med. Sci., 2010, Vol. 39, рр. 73–80.

34. Benotsch E.G., Mikytuck J.J., Pinkerton S.D. Sexual risk and HIV acquisition among men who have sex with men travelers to Key West, Florida: a mathematical modeling analysis. AIDS Patient Care STDs., 2006, Vol. 20, No. 8, pp. 549–556.

35. Prudden H., Foss A., Mitchell K., Рickles М., Ramesh B. Using mathematical modelling to investigate the role of the hidden «population of men who have sex with men (MSM) on the HIV epidemic in Southern India». Sex. Transm. Infect., 2011, Vol. 87, рр. A168.

36. Розенталь В.В., Беляков Н.А., Пантелеева О.В. Подходы к прогнозированию эпидемии ВИЧ-инфекции // ВИЧ-инфекция и иммуносупрессии. 2010. Т. 2, № 3. С. 7–15. [Rozental V.V., Beliakov N.A., Panteleeva O.V. Аpproaches to forecasting of HIV epidemic. HIV Infection and Immunosuppressive Disorders, 2010, Vol. 2, No. 6, рр. 7–15 (In Russ.)].

37. Компьютерная программа для прогнозирования ВИЧ/СПИДа и анализа социально-экономических последствий СПИДа, (2016). URL: http://www.healthpolicyinitiative.com/index.cfm?id=software&get=Spectrum.

38. Rollins N., Mahy M., Becquet R., Kuhn L., Creek T., Mofenson L. Estimates of peripartum and postnatal mother-to-child transmission probabi- lities of HIV for use in Spectrum and other population-based models. Sex. Transm. Infect., 2012, Vol. 88, рр. 44–51.

39. Нешумаев Д.А., Малышева М.А., Шевченко Н.М., Кокотюха Ю.А, Мейрманова Е.М., Уланова Т.И., Загрядская Ю.Е. Моделирование динамики эпидемии ВИЧ-инфекции с использованием частоты встречаемости ранних случаев заражения // ВИЧ-инфекция и иммуносупрессии. 2016. Т. 8, № 2. С. 53–60. [Neshumayev D.A., Malysheva M.A., Shevchenko N.M., Kokotyukha Yu.A., Meyrmanova Е.M., Ulanova T.I., Zagryadskaya Yu.Е. Modeling the dynamics of HIV epidemic based on the incidence of early HIV cases. HIV Infection and Immunosuppressive Disorders, 2016, Vol. 8, No. 2, рр. 53–60 (In Russ.)].

40. Wagner B.G., Blower S. Universal access to HIV treatment versus universal «test and treat»: transmission, drug resistance & treatment costs. PLoS, 2012, Vol. 7, No. 9, рр. e41212.

41. Бобрик А.В. Профилактика ВИЧ среди потребителей наркотиков в российских городах. Анализ экономической эффективности // Российский семейный врач. 2002. Т. 4, № 6. С. 30–36. [Bobrik A.V. Prevention of HIV among drug users in Russian cities. Analysis of economic efficiency. Russian Family Doctor, 2002, Vol. 4, No. 6, рр. 30–36 (In Russ.)].

42. Boily M.-C., Lowndes C.M., Vickerman P., Kumaranayake L., Blanchard J., Moses S., Ramesh B.M., Pickles M. Evaluating large-scale HIV pre- vention interventions: study design for an integrated mathematical modelling approach. Sex. Transm. Infect., 2007, Vol. 83, pp. 582–589.

43. Heaton L.M., Bouey P.D., Fu J., Stover J., Fowler T.B., Lyerla R. Estimating the impact of the US President’s emergency plan for AIDS relief on HIV treatment and prevention programmes in Africa. Sex. Transm. Infect., 2015, Vol. 91, pp. 615–620.

44. Wilson D.P., Fairley C.K., Sankar D., Williams H., Keen P., Read T.R. Replacement of conventional HIV testing with rapid testing: mathematical modelling to predict the impact on further HIV transmission between men. Sex. Transm. Infect., 2011, Vol. 87, pp. 588–593.

45. Cambiano V., Ford D., Mabugu T., Napierala M.S., Miners A., Mugurungi O. Assessment of the potential impact and cost-effectiveness of self-testing for HIV in low-income countries. J. Infect. Dis., 2015, Vol. 212, pp. 570–577.

46. Coco A. The cost-effectiveness of expanded testing for primary HIV infection. Ann. Fam. Med., 2005, Vol. 3, No. 5, pp. 391–399.

47. Лонг Э.Ф., Брандо М.Л., Гелвин К.М., Виниченко Т., Толе С.П., Шварц А. Оценка эффективности и экономической эффективности стратегии расширенной антиретровирусной терапии в Санкт-Петербурге, Россия // AIDS. 2006. Т. 20. С. 2207–2215. [Long E.F., Brandeau M.L., Galvin K.M., Vinichenko T., Tole S.P., Schwartz A. Effectiveness and cost-effectiveness of strategies to expand antiretroviral the- rapy in St. Petersburg, Russia. AIDS, 2006, Vol. 20, рр. 2207–2215 (In Russ.)].

48. Stover J. Influence of mathematical modeling of HIV and AIDS on policies and programs in the developing world. Sex. Transm. Dis., 2000, Vol. 27, No. 10, pp. 572–578.

49. Рюль К., Покровский В.В., Виноградов В. Экономические последствия распространения ВИЧ-инфекции в России. 2002. URL: http://www.ilo.org/moscow/news/WCMS_245560/lang-ru/index.htm (In Russ.).

50. Galletly C.L., Pinkerton S.D. Preventing HIV transmission via HIV exposure laws: applying logic and mathematical modeling to compare statu- tory approaches to penalizing undisclosed exposure to HIV. J. Law. Med. Ethics., 2008, Vol. 36, No. 3, pp. 577–584.


Review

For citations:


Neshumaev D.A., Sucharev E.N., Stasenko V.L. MATHEMATICAL MODELING OF EPIDEMIOLOGICAL AND BIOLOGICAL HIV INFECTION PROCESSES. HIV Infection and Immunosuppressive Disorders. 2017;9(2):58-67. (In Russ.) https://doi.org/10.22328/2077-9828-2017-9-2-58-67

Views: 2136


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2077-9828 (Print)