Preview

HIV Infection and Immunosuppressive Disorders

Advanced search

AUTOMATIC SEGMENTATION OF BRAIN MRI IMAGES: METHODS AND SOFTWARE

https://doi.org/10.22328/2077-9828-2014-6-3-73-77

Abstract

The article describes a technique of brain MRI postprocessing to assess brain atrophy changes in patients with multiple sclerosis. The technique is based on the integrated use of different software tools for automatic segmentation of normal brain structures. Comparative results of brain structure evaluation using FreeSurfer and FSL software packages are presented. Using a structured report to show the main results of postprocessing is proposed. The report can be used for segmentation visual quality control and for dynamic comparison of individual morphometry results. The use of an auxiliary in-house software which defines sequence and startup parameters for the used programs in a group of patients and automatically creates structured reports is proposed.

About the Authors

E. P. Magonov
N.P.Bechtereva Institute of the Human Brain of Russian academy of sciences; NMC Tomography LLC, Scandinavia Clinic
Russian Federation


L. N. Prakhova
N.P.Bechtereva Institute of the Human Brain of Russian academy of sciences
Russian Federation


A. G. Ilves
N.P.Bechtereva Institute of the Human Brain of Russian academy of sciences
Russian Federation


G. V. Kataeva
N.P.Bechtereva Institute of the Human Brain of Russian academy of sciences
Russian Federation


T. N. Trofimova
N.P.Bechtereva Institute of the Human Brain of Russian academy of sciences; NMC Tomography LLC, Scandinavia Clinic; Institute of Experimental Medicine
Russian Federation


References

1. Гусев Е.И. Рассеянный склероз и другие демиелинизирующие заболевания. Руководство для врачей / под ред. Е.И.Гусев, И.А.Завалишин, А.Н.Бойко.- М.: Миклош. 2004. 540 с.

2. Труфанов, Г.Е. Магнитно-резонансная томография: руководство для врачей / под ред. Г.Е.Труфанов, В.А.Фокин.- СПб: ООО «Издательство ФОЛИАНТ», 2007.- 688 с.

3. Трофимова Т.Н., Беляков Н.А. Многоликая нейрорадиология ВИЧ-инфекции // Лучевая диагностика и терапия.- 2010.- Т. 1, № 3.- С. 3 - 11.

4. Clarke L.P., Velthuizen R.P., Camacho M.A., Heine J.J., Vaidyanathan M., Hall L.O., Thatcher R.W., Silbiger M.L. MRI segmentation: Methods and applications // Magnetic Resonance Imaging.- 1995.- Vol. 13, № 3.- С. 343-368.

5. Wen W., Sachdev P. The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals // Neuroimage.- 2004.- Vol. 22, № 1.- С. 144-154.

6. Admiraal-Behloul F., van den HeuvelD. M, OlofsenH, van OschMJ., van der Grond J., van Buchem M.A., Reiber J.H. Fully automatic segmentation of white matter hyperintensities in MR images of the elderly // Neuroimage.- 2005.- Vol. 28, № 3.- С. 607-617.

7. Maillard P., Delcroix N, Crivello F, Dufouil C., Gicquel S., Joliot M., Tzourio-Mazoyer N, Alperovitch A., Tzourio C., Mazoyer B. An automated procedure for the assessment of white matter hyperintensities by multispectral (T1, T2, PD) MRI and an evaluation of its between-centre reproducibility based on two large community databases // Neuroradiology.- 2008.- Vol. 50, № 1.- С. 31-42.

8. Bankman I.H. Handbook of medical image processing and analysis // Elsevier.- 2009.- 984 c.


Review

For citations:


Magonov E.P., Prakhova L.N., Ilves A.G., Kataeva G.V., Trofimova T.N. AUTOMATIC SEGMENTATION OF BRAIN MRI IMAGES: METHODS AND SOFTWARE. HIV Infection and Immunosuppressive Disorders. 2014;6(3):73-77. (In Russ.) https://doi.org/10.22328/2077-9828-2014-6-3-73-77

Views: 858


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2077-9828 (Print)