Analysis of some IFNAR1 gene polymorphisms in HIV-infected patients
https://doi.org/10.22328/2077-9828-2025-17-3-65-72
Abstract
The aim of this study was to examine the genotypic and allelic distribution of certain polymorphic variants of the IFNAR1 gene in HIV-positive patients and evaluate their association with HIV infection.
Materials and methods. The study material consisted of whole blood samples obtained from HIV-infected individuals with virological failure of antiretroviral therapy (n=378) and apparently healthy individuals (n=319). We performed sequencing of all exons of the IFNAR1 gene with partial coverage of flanking intronic sequences, including analysis of the promoter region and a substantial intronic segment in the pre-promoter region, followed by analysis of the obtained nucleotide sequences.
Results and discussion. We demonstrated statistically significant associations with HIV infection for three polymorphic variants of the IFNAR1 gene: rs2843710 (–654 C/G), rs2257167 (exon 4, 18339G>C: Val168Leu), and rs2856973 (intron 10, 28767 A>T). The genotype distribution of all studied polymorphic variants in the analyzed groups conformed to HardyWeinberg equilibrium. Significant differences in genotype distribution were shown between HIV-infected individuals and the control group: rs2843710 — х2=9.624 at p=0.0081; rs2257167 — х2=8.623 at p=0.0134; rs2856973 — х2=10.447 at p=0.0054. The homozygous C/C genotype and minor C allele of rs2257167 locus were associated with predisposition to HIV infection, while the G/G (rs2843710) and T/T (rs2856973) genotypes along with their corresponding G and T alleles demonstrated a pronounced protective effect.
Conclusion. This study reveals an association between IFNAR1 gene polymorphisms and a predisposition to HIV infection, demonstrating their significant, albeit non-exclusive, role in the disease development.
About the Authors
Yu. V. OstankovaRussian Federation
Ostankova Yulia Vladimirovna
St. Petersburg
V. S. Davydenko
Russian Federation
St. Petersburg
A. N. Schemelev
Russian Federation
St. Petersburg
A. A. Totolian
Russian Federation
St. Petersburg
References
1. Global HIV & AIDS statistics — Fact sheet / UNAIDS 2024 epidemiological estimates. Available from: https://www.unaids.org/en/resources/factsheet (access date: 14.08.2025).
2. McMyn N.F., Varriale J., Fray E.J., Zitzmann C., MacLeod H., Lai J., Singhal A., Moskovljevic M., Garcia M.A., Lopez B.M., Hariharan V., Rhodehouse K., Lynn K., Tebas P., Mounzer K., Montaner L.J., Benko E., Kovacs C., Hoh R., Simonetti F.R., Laird G.M., Deeks S.G., Ribeiro R.M., Perelson A.S., Siliciano R.F., Siliciano J.M. The latent reservoir of inducible, infectious HIV-1 does not decrease despite decades of antiretroviral therapy // J. Clin. Invest. 2023. Vol. 133, No. 17. Р. e171554. doi: 10.1172/JCI171554.
3. Schemelev A.N., Davydenko V.S., Ostankova Y.V., Reingardt D.E., Serikova E.N., Zueva E.B., Totolian A.A. Involvement of Human Cellular Proteins and Structures in Realization of the HIV Life Cycle: A Comprehensive Review, 2024 // Viruses. 2024. Vol. 16. Р. 1682. https://doi.org/10.3390/v16111682.
4. Ivanov S., Lagunin A., Filimonov D., Tarasova O. Network-based analysis of OMICs data to understand the HIV-host interaction // Front. Microbiol. 2020. Vol. 11. Р. 1314. doi: 10.3389/fmicb.2020.01314.
5. Hendricks C.M., Cordeiro T., Gomes A.P., Stevenson M. The Interplay of HIV-1 and Macrophages in Viral Persistence // Front Microbiol. 2021. Vol. 12. Р. 646447. doi: 10.3389/fmicb.2021.646447.
6. Delannoy A., Poirier M., Bell B. Cat and Mouse: HIV Transcription in Latency, Immune Evasion and Cure/Remission Strategies // Viruses. 2019. Vol. 11, No. 3. Р. 269. doi: 10.3390/v11030269.
7. Balasubramaniam M., Pandhare J., Dash C. Immune Control of HIV // J. Life Sci. (Westlake Village). 2019. Vol. 1, No. 1. Р. 4–37. URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC6714987/
8. Swiecki M., Colonna M. Type I interferons: diversity of sources, production pathways and effects on immune responses // Curr. Opin Virol. 2011. Vol. 1, No. 6. Р. 463–475. doi: 10.1016/j.coviro.2011.10.026.
9. Ali S., Mann-Nüttel R., Schulze A., Richter L., Alferink J., Scheu S. Sources of Type I Interferons in Infectious Immunity: Plasmacytoid Dendritic Cells Not Always in the Driver’s Seat // Front Immunol. 2019. Vol. 10. Р. 778. doi: 10.3389/fimmu.2019.00778.
10. Nguyen N.V., Tran J.T., Sanchez D.J. HIV blocks Type I IFN signaling through disruption of STAT1 phosphorylation // Innate Immun. 2018. Vol. 24, No. 8. Р. 490–500. doi: 10.1177/1753425918803674.
11. Wang Y., Qian G., Zhu L., Zhao Z., Liu Y., Han W., Zhang X., Zhang Y., Xiong T., Zeng H., Yu X., Yu X., Zhang X., Xu J., Zou Q., Yan D. HIV-1 Vif suppresses antiviral immunity by targeting STING // Cell Mol Immunol. 2022. Vol. 19, No. 1. Р. 108–121. doi: 10.1038/s41423-021-00802-9.
12. Ostankova Y.V., Serikova E.N., Anufrieva E.V., Basina V.V., Mashkov I.A., Shirshova N.Yu., Kusevitskaya M.B., Gorskaya O.A., Totolian A.A. Prognostic assessment of hepatocellular carcinoma development based on the determination of human IFNAR-1 gene polymorphism and/or its expression. Clinical Laboratory Diagnostics, 2024, Vol. 69, No. 7, рр. 349–357 (In Russ.)
13. Diop G., Hirtzig T., Do H., Coulonges C., Vasilescu A., Labib T., Spadoni J.L., Therwath A., Lathrop M., Matsuda F., Zagury J.F. Exhaustive genotyping of the interferon alpha receptor 1 (IFNAR1) gene and association of an IFNAR1 protein variant with AIDS progression or susceptibility to HIV-1 infection in a French AIDS cohort // Biomed Pharmacother. 2006. Vol. 60, No. 9. Р. 569–577. doi: 10.1016/j.biopha.2006.08.002.
14. Salanti G., Amountza G., Ntzani E.E., Ioannidis J.P. Hardy-Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power // Eur. J. Hum. Genet. 2005. Vol. 13, No. 7. Р. 840–848. doi: 10.1038/sj.ejhg.5201410.
15. Pekkoc-Uyanik K.C., Todurga-Seven Z.G., Shahzadi A., Sonmez H., Mercan S., Mete B., Tabak F. Next-generation sequencing of CCR5, CXCR4, and IFNAR1 variants in relation to HIV-1 disease progression and ART response // Sci. Rep. 2025. Vol. 15, No. 1. Р. 26511. doi: 10.1038/s41598-025-11843-9.
16. Mhandire D.Z., Mhandire K., Magadze M., Wonkam A., Kengne A.P., Dandara C. Genetic variation in toll like receptors 2, 7, 9 and interleukin6 is associated with cytomegalovirus infection in late pregnancy // BMC Med. Genet. 2020. Vol. 21, No. 1. Р. 113. doi: 10.1186/s12881-020-01044-8.
17. Zou R., Zhang G., Li S., Wang W., Yuan J., Li J., Wang Y., Lin Y., Deng Y., Zhou B., Gao G.F., Liu Y. A functional polymorphism in IFNAR1 gene is associated with susceptibility and severity of HFMD with EV71 infection // Sci Rep. 2015. Vol. 5. Р. 18541. doi: 10.1038/srep18541.
18. Cheng L., Yu H., Li G., Li F., Ma J., Li J., Chi L., Zhang L., Su L. Type I interferons suppress viral replication but contribute to T cell depletion and dysfunction during chronic HIV-1 infection // JCI Insight. 2017. Vol. 2, No. 12. e94366. doi: 10.1172/jci.insight.94366. 1
19. Singh H., Ojeda-Juárez D., Maung R., Shah R., Roberts A.J., Kaul M. A pivotal role for Interferon-a receptor-1 in neuronal injury induced by HIV-1 // J. Neuroinflammation. 2020. Vol. 17, No. 1. Р. 226. doi: 10.1186/s12974-020-01894-2.
Review
For citations:
Ostankova Yu.V., Davydenko V.S., Schemelev A.N., Totolian A.A. Analysis of some IFNAR1 gene polymorphisms in HIV-infected patients. HIV Infection and Immunosuppressive Disorders. 2025;17(3):65-72. (In Russ.) https://doi.org/10.22328/2077-9828-2025-17-3-65-72

.png)





























