ДИСКОРДАНТНЫЙ ОТВЕТ CD4+ T-ЛИМФОЦИТОВ НА АНТИРЕТРОВИРУСНУЮ ТЕРАПИЮ
https://doi.org/10.22328/2077-9828-2019-11-1-
Аннотация
Стандартным результатом проведения антиретровирусной терапии (АРТ) у ВИЧ-инфицированных пациентов является подавление репликации вируса и восстановление численности CD4+ T-лимфоцитов. Однако у части больных (приблизительно у 20%) на фоне низкой вирусной нагрузки отмечается нарушение регенерации иммунокомпетентных клеток. В литературе для них был введен термин “immunological nonresponders” (англ.) – «иммунологические неответчики» (ИН). Причиной развития дискордантного иммунологического ответа на терапию может быть, как усиление гибели, так и уменьшение образования CD4+ T-клеток. Однако механизмы формирования низкого восстановительного потенциала иммунитета остаются недостаточно изученными. Известно, что у ИН по сравнению с пациентами, которые демонстрируют конкордантный ответ на лечение, наблюдается усиленная пролиферация лимфоцитов, повышенная иммунная активация, сокращение времени жизни CD4+ T-лимфоцитов. Состояние их иммунной системы характеризуется более яркими проявлениями истощения и старения. Это приводит к раннему и частому появлению СПИД-ассоциированных заболеваний. Кроме того, ИН подвержены высокому риску возникновения неассоциированных со СПИДом болезней, что обусловлено развитием выраженного системного воспаления. Представленный обзор направлен на освещение важной проблемы, возникающей при назначении АРТ, и привлечению к ее решению внимания специалистов.
Ключевые слова
Об авторе
Константин Владимирович ШмагельФедеральное государственное бюджетное учреждение науки Пермский федеральный исследовательский центр Уральского отделения Российской академии наук; Федеральное государственное бюджетное образовательное учреждение высшего образования «Пермский государственный национальный исследовательский университет»
Россия
Заведующий лабораторией экологической иммунологии Института экологии и генетики микроорганизмов УрО РАН, профессор кафедры микробиологии и иммунологии Пермского государственного национального исследовательского университета
SPIN-код: 9181-7603; Scopus Author ID: 24081205900;
ResearcherID: J-8454-2018
Список литературы
1. Palella F.J., Delaney K.M., Moorman A.C., Loveless M.O., Fuhrer J., Satten G.A., Aschman D.J., Holmberg S.D., Investigators H.O.S. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. New Engl. J. Med. 1998. Vol. 338. No. 13. pp. 853-860.
2. <Go to ISI>://WOS:000072669800001
3. Evans T.G., Bonnez W., Soucier H.R., Fitzgerald T., Gibbons D.C., Reichman R.C. Highly active antiretroviral therapy results in a decrease in CD8(+) T cell activation and preferential reconstitution of the peripheral CD4(+) T cell population with memory rather than naive cells. Antivir. Res. 1998. Vol. 39. No. 3. pp. 163-173.
4. <Go to ISI>://WOS:000076934000002
5. Tilling R., Kinloch S., Goh L.E., Cooper D., Perrin L., Lampe F., Zaunders J., Hoen B., Tsoukas C., Andersson J., Janossy G., Grp Q.S. Parallel decline of CD8+/CD38++ T cells and viraemia in response to quadruple highly active antiretroviral therapy in primary HIV infection. AIDS. 2002. Vol. 16. No. 4. pp. 589-596. <Go to ISI>://WOS:000174367100010
6. Hileman C.O., Funderburg N.T. Inflammation, immune activation, and antiretroviral therapy in HIV. Curr. HIV/AIDS Rep. 2017. Vol. 14. No. 3. pp. 93-100.
7. https://www.ncbi.nlm.nih.gov/pubmed/28434169
8. Gulick R.M., Mellors J.W., Havlir D., Eron J.J., Gonzalez C., McMahon D., Richman D.D., Valentine F.T., Jonas L., Meibohm A., Emini E.A., Chodakewitz J.A. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. New Engl. J. Med. 1997. Vol. 337. No. 11. pp. 734-739.
9. <Go to ISI>://WOS:A1997XV17400002
10. Hammer S.M., Squires K.E., Hughes M.D., Grimes J.M., Demeter L.M., Currier J.S., Eron J.J., Feinberg J.E., Balfour H.H., Dayton L.R., Chodakewitz J.A., Fischl M.A. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. New Engl. J. Med. 1997. Vol. 337. No. 11. pp. 725-733.
11. <Go to ISI>://WOS:A1997XV17400001
12. Laskey S.B., Siliciano R.F. A mechanistic theory to explain the efficacy of antiretroviral therapy. Nat. Rev. Microbiol. 2014. Vol. 12. No. 11. pp. 772-780.
13. https://www.ncbi.nlm.nih.gov/pubmed/25263222
14. Hill A.L., Rosenbloom D.I., Fu F., Nowak M.A., Siliciano R.F. Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1. Proc. Natl. Acad. Sci. U S A. 2014. Vol. 111. No. 37. pp. 13475-13480.
15. https://www.ncbi.nlm.nih.gov/pubmed/25097264
16. Bucy R.P., Hockett R.D., Derdeyn C.A., Saag M.S., Squires K., Sillers M., Mitsuyasu R.T., Kilby J.M. Initial increase in blood CD4(+) lymphocytes after HIV antiretroviral therapy reflects redistribution from lymphoid tissues. J. Clin. Invest. 1999. Vol. 103. No. 10. pp. 1391-1398.
17. <Go to ISI>://WOS:000083467200005
18. Pakker N.G., Notermans D.W., de Boer R.J., Roos M.T.L., de Wolf F., Hill A., Leonard J.M., Danner S.A., Miedema F., Schellekens P.T.A. Biphasic kinetics of peripheral blood T cells after triple combination therapy in HIV-1 infection: A composite of redistribution and proliferation. Nat. Med. 1998. Vol. 4. No. 2. pp. 208-214.
19. <Go to ISI>://WOS:000072249800037
20. Le Moing V., Thiebaut R., Chene G., Leport C., Cailleton V., Michelet C., Fleury H., Herson S., Raffi F., Group A.S. Predictors of long-term increase in CD4(+) cell counts in human immunodeficiency virus-infected patients receiving a protease inhibitor-containing antiretroviral regimen. J. Infect. Dis. 2002. Vol. 185. No. 4. pp. 471-480.
21. http://www.ncbi.nlm.nih.gov/pubmed/11865399
22. Lok J.J., Bosch R.J., Benson C.A., Collier A.C., Robbins G.K., Shafer R.W., Hughes M.D., Team A. Long-term increase in CD4(+) T-cell counts during combination antiretroviral therapy for HIV-1 infection. AIDS. 2010. Vol. 24. No. 12. pp. 1867-1876.
23. <Go to ISI>://WOS:000279697400008
24. Tchao N.K., Turka L.A. Lymphodepletion and Homeostatic Proliferation: Implications for Transplantation. Am. J. Transplant. 2012. Vol. 12. No. 5. pp. 1079-1090.
25. <Go to ISI>://WOS:000303235100006
26. Kieper W.C., Troy A., Burghardt J.T., Ramsey C., Lee J.Y., Jiang H.Q., Dummer W., Shen H., Cebra J.J., Surh C.D. Cutting edge: Recent immune status determines the source of antigens that drive homeostatic T cell expansion. J. Immunol. 2005. Vol. 174. No. 6. pp. 3158-3163.
27. <Go to ISI>://WOS:000227510900005
28. Min B., Yamane H., Hu-Li J., Paul W.E. Spontaneous and homeostatic proliferation of CD4 T cells are regulated by different mechanisms. J. Immunol. 2005. Vol. 174. No. 10. pp. 6039-6044.
29. <Go to ISI>://WOS:000228958900018
30. Surh C.D., Sprent J. Homeostasis of naive and memory T cells. Immunity. 2008. Vol. 29. No. 6. pp. 848-862.
31. <Go to ISI>://WOS:000262012400006
32. Goldrath A.W., Bevan M.J. Low-affinity ligands for the TCR drive proliferation of mature CD8(+) T cells in lymphopenic hosts. Immunity. 1999. Vol. 11. No. 2. pp. 183-190.
33. <Go to ISI>://WOS:000082383400007
34. Martin B., Bourgeois C., Dautigny N., Lucas B. On the role of MHC class II molecules in the survival and lymphopenia-induced proliferation of peripheral CD4(+) T cells. Proc. Natl. Acad. Sci. U S A. 2003. Vol. 100. No. 10. pp. 6021-6026.
35. <Go to ISI>://WOS:000182939400082
36. Takeda S., Rodewald H.R., Arakawa H., Bluethmann H., Shimizu T. MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity. 1996. Vol. 5. No. 3. pp. 217-228.
37. http://www.ncbi.nlm.nih.gov/pubmed/8808677
38. Tanchot C., Lemonnier F.A., Perarnau B., Freitas A.A., Rocha B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science. 1997. Vol. 276. No. 5321. pp. 2057-2062.
39. http://www.ncbi.nlm.nih.gov/pubmed/9197272
40. Fry T.J., Mackall C.L. The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J. Immunol. 2005. Vol. 174. No. 11. pp. 6571-6576.
41. http://www.ncbi.nlm.nih.gov/pubmed/15905493
42. Tan J.T., Dudl E., LeRoy E., Murray R., Sprent J., Weinberg K.I., Surh C.D. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl. Acad. Sci. U S A. 2001. Vol. 98. No. 15. pp. 8732-8737.
43. <Go to ISI>://WOS:000169967000094
44. Neujahr D.C., Chen C.Q., Huang X., Markmann J.F., Cobbold S., Waldmann H., Sayegh M.H., Hancock W.W., Turka L.A. Accelerated memory cell homeostasis during T cell depletion and approaches to overcome it. J. Immunol. 2006. Vol. 176. No. 8. pp. 4632-4639.
45. <Go to ISI>://WOS:000238769000020
46. Chalasani G., Dai Z.H., Konieczny B.T., Baddoura F.K., Lakkis F.G. Recall and propagation of allospecific memory T cells independent of secondary lymphoid organs. Proc. Natl. Acad. Sci. U S A. 2002. Vol. 99. No. 9. pp. 6175-6180.
47. <Go to ISI>://WOS:000175377800078
48. Murali-Krishna K., Lau L.L., Sambhara S., Lemonnier F., Altman J., Ahmed R. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science. 1999. Vol. 286. No. 5443. pp. 1377-1381.
49. <Go to ISI>://WOS:000083675500048
50. Swain S.L., Hu H., Huston G. Class II-independent generation of CD4 memory T cells from effectors. Science. 1999. Vol. 286. No. 5443. pp. 1381-1383.
51. http://www.ncbi.nlm.nih.gov/pubmed/10558997
52. Tan J.T., Ernst B., Kieper W.C., LeRoy E., Sprent J., Surh C.D. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 2002. Vol. 195. No. 12. pp. 1523-1532.
53. https://www.ncbi.nlm.nih.gov/pubmed/12070280
54. Judge A.D., Zhang X.H., Fujii H., Surh C.D., Sprent J. Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8(+) T cells. J. Exp. Med. 2002. Vol. 196. No. 7. pp. 935-946.
55. <Go to ISI>://WOS:000178518100007
56. Mohan M., Kaushal D., Aye P.P., Alvarez X., Veazey R.S., Lackner A.A. Focused Examination of the Intestinal Epithelium Reveals Transcriptional Signatures Consistent with Disturbances in Enterocyte Maturation and Differentiation during the Course of SIV Infection. PloS One. 2013, Vol. 8. e60122.
57. <Go to ISI>://WOS:000317909600013
58. Sharpstone D., Neild P., Crane R., Taylor C., Hodgson C., Sherwood R., Gazzard B., Bjarnason I. Small intestinal transit, absorption, and permeability in patients with AIDS with and without diarrhoea. Gut. 1999. Vol. 45. No. 1. pp. 70-76.
59. <Go to ISI>://WOS:000081079400016
60. Klatt N.R., Funderburg N.T., Brenchley J.M. Microbial translocation, immune activation, and HIV disease. Trends Microbiol. 2013. Vol. 21. No. 1. pp. 6-13. http://www.ncbi.nlm.nih.gov/pubmed/23062765
61. Nazli A., Chan O., Dobson-Belaire W.N., Ouellet M., Tremblay M.J., Gray-Owen S.D., Arsenault A.L., Kaushic C. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PloS Pathog. 2010, Vol. 6. e1000852. <Go to ISI>://WOS:000277722400024
62. Smith A.J., Schacker T.W., Reilly C.S., Haase A.T. A role for syndecan-1 and claudin-2 in microbial translocation during HIV-1 infection. JAIDS. 2010. Vol. 55. No. 3. pp. 306-315. <Go to ISI>://WOS:000283847400006
63. Gordon S.N., Cervasi B., Odorizzi P., Silverman R., Aberra F., Ginsberg G., Estes J.D., Paiardini M., Frank I., Silvestri G. Disruption of intestinal CD4+ T cell homeostasis is a key marker of systemic CD4+ T cell activation in HIV-infected individuals. J. Immunol. 2010. Vol. 185. No. 9. pp. 5169-5179.
64. http://www.ncbi.nlm.nih.gov/pubmed/20889546
65. Klatt N.R., Estes J.D., Sun X., Ortiz A.M., Barber J.S., Harris L.D., Cervasi B., Yokomizo L.K., Pan L., Vinton C.L., Tabb B., Canary L.A., Dang Q., Hirsch V.M., Alter G., Belkaid Y., Lifson J.D., Silvestri G., Milner J.D., Paiardini M., Haddad E.K., Brenchley J.M. Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol. 2012. Vol. 5. No. 6. pp. 646-657.
66. <Go to ISI>://WOS:000310572800007
67. Brenchley J.M., Price D.A., Schacker T.W., Asher T.E., Silvestri G., Rao S., Kazzaz Z., Bornstein E., Lambotte O., Altmann D., Blazar B.R., Rodriguez B., Teixeira-Johnson L., Landay A., Martin J.N., Hecht F.M., Picker L.J., Lederman M.M., Deeks S.G., Douek D.C. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 2006. Vol. 12. No. 12. pp. 1365-1371.
68. http://www.ncbi.nlm.nih.gov/pubmed/17115046
69. Estes J.D., Harris L.D., Klatt N.R., Tabb B., Pittaluga S., Paiardini M., Barclay G.R., Smedley J., Pung R., Oliveira K.M., Hirsch V.M., Silvestri G., Douek D.C., Miller C.J., Haase A.T., Lifson J., Brenchley J.M. Damaged intestinal epithelial integrity linked to microbial translocation in pathogenic simian immunodeficiency virus infections. PloS Pathog. 2010, Vol. 6. e1001052.
70. <Go to ISI>://WOS:000281399900025
71. Marchetti G., Bellistri G.M., Borghi E., Tincati C., Ferramosca S., La Francesca M., Morace G., Gori A., Monforte A.D. Microbial translocation is associated with sustained failure in CD4+ T-cell reconstitution in HIV-infected patients on long-term highly active antiretroviral therapy. AIDS. 2008. Vol. 22. No. 15. pp. 2035-2038.
72. <Go to ISI>://WOS:000259680100016
73. Leon A., Leal L., Torres B., Lucero C., Inciarte A., Arnedo M., Plana M., Vila J., Gatell J.M., Garcia F. Association of microbial translocation biomarkers with clinical outcome in controllers HIV-infected patients. AIDS. 2015. Vol. 29. No. 6. pp. 675-681.
74. <Go to ISI>://WOS:000351688200005
75. Marchetti G., Cozzi-Lepri A., Merlini E., Bellistri G.M., Castagna A., Galli M., Verucchi G., Antinori A., Costantini A., Giacometti A., di Caro A., Monforte A.D., Grp I.F.S. Microbial translocation predicts disease progression of HIV-infected antiretroviral-naive patients with high CD4(+) cell count. AIDS. 2011. Vol. 25. No. 11. pp. 1385-1394.
76. <Go to ISI>://WOS:000292183900006
77. Sandler N.G., Wand H., Roque A., Law M., Nason M.C., Nixon D.E., Pedersen C., Ruxrungtham K., Lewin S.R., Emery S., Neaton J.D., Brenchley J.M., Deeks S.G., Sereti I., Douek D.C., Grp I.S.S. Plasma Levels of Soluble CD14 Independently Predict Mortality in HIV Infection. J. Infect. Dis. 2011. Vol. 203. No. 6. pp. 780-790.
78. <Go to ISI>://WOS:000287742700006
79. Guihot A., Bourgarit A., Carcelain G., Autran B. Immune reconstitution after a decade of combined antiretroviral therapies for human immunodeficiency virus. Trends Immunol. 2011. Vol. 32. No. 3. pp. 131-137. http://www.ncbi.nlm.nih.gov/pubmed/21317040
80. Rallon N., Sempere-Ortells J.M., Soriano V., Benito J.M. Central memory CD4 T cells are associated with incomplete restoration of the CD4 T cell pool after treatment-induced long-term undetectable HIV viraemia. J. Antimicrob. Chemother. 2013. Vol. 68. No. 11. pp. 2616-2625. http://www.ncbi.nlm.nih.gov/pubmed/23833186
81. Robbins G.K., Spritzler J.G., Chan E.S., Asmuth D.M., Gandhi R.T., Rodriguez B.A., Skowron G., Skolnik P.R., Shafer R.W., Pollard R.B., Team A.C.T.G. Incomplete reconstitution of T cell subsets on combination antiretroviral therapy in the AIDS Clinical Trials Group protocol 384. Clin. Infect. Dis. 2009. Vol. 48. No. 3. pp. 350-361.
82. http://www.ncbi.nlm.nih.gov/pubmed/19123865
83. Hua W., Jiao Y., Zhang H., Zhang T., Chen D., Zhang Y., Chen X., Wu H. Central memory CD4 cells are an early indicator of immune reconstitution in HIV/AIDS patients with anti-retroviral treatment. Immunol. Invest. 2012. Vol. 41. No. 1. pp. 1-14.
84. http://www.ncbi.nlm.nih.gov/pubmed/21563924
85. Letvin N.L., Mascola J.R., Sun Y., Gorgone D.A., Buzby A.P., Xu L., Yang Z.Y., Chakrabarti B., Rao S.S., Schmitz J.E., Montefiori D.C., Barker B.R., Bookstein F.L., Nabel G.J. Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. Science. 2006. Vol. 312. No. 5779. pp. 1530-1533.
86. http://www.ncbi.nlm.nih.gov/pubmed/16763152
87. Potter S.J., Lacabaratz C., Lambotte O., Perez-Patrigeon S., Vingert B., Sinet M., Colle J.H., Urrutia A., Scott-Algara D., Boufassa F., Delfraissy J.F., Theze J., Venet A., Chakrabarti L.A. Preserved central memory and activated effector memory CD4+ T-cell subsets in human immunodeficiency virus controllers: an ANRS EP36 study. J. Virol. 2007. Vol. 81. No. 24. pp. 13904-13915.
88. http://www.ncbi.nlm.nih.gov/pubmed/17928341
89. Autran B., Carcelaint G., Li T.S., Gorochov G., Blanc C., Renaud M., Durali M., Mathez D., Calvez V., Leibowitch J., Katlama C., Debre P. Restoration of the immune system with anti-retroviral therapy. Immunol. Lett. 1999. Vol. 66. No. 1-3. pp. 207-211.
90. <Go to ISI>://WOS:000079258500031
91. Piketty C., Castiel P., Belec L., Batisse D., Si Mohamed A., Gilquin J., Gonzalez-Canali G., Jayle D., Karmochkine M., Weiss L., Aboulker J.P., Kazatchkine M.D. Discrepant responses to triple combination antiretroviral therapy in advanced HIV disease. AIDS. 1998. Vol. 12. No. 7. pp. 745-750. http://www.ncbi.nlm.nih.gov/pubmed/9619806
92. Gaardbo J.C., Hartling H.J., Gerstoft J., Nielsen S.D. Incomplete immune recovery in HIV infection: mechanisms, relevance for clinical care, and possible solutions. Clin. Dev. Immunol. 2012. Vol. 2012. No. pp. 670957.
93. http://www.ncbi.nlm.nih.gov/pubmed/22474480
94. Massanella M., Negredo E., Clotet B., Blanco J. Immunodiscordant responses to HAART--mechanisms and consequences. Expert Rev. Clin. Immunol. 2013. Vol. 9. No. 11. pp. 1135-1149. http://www.ncbi.nlm.nih.gov/pubmed/24168417
95. Autran B., Carcelain G., Li T.S., Blanc C., Mathez D., Tubiana R., Katlama C., Debre P., Leibowitch J. Positive effects of combined antiretroviral therapy on CD4(+) T cell homeostasis and function in advanced HIV disease. Science. 1997. Vol. 277. No. 5322. pp. 112-116. <Go to ISI>://WOS:A1997XJ41800052
96. Tuboi S.H., Pacheco A.G., Harrison L.H., Stone R.A., May M., Brinkhof M.W., Dabis F., Egger M., Nash D., Bangsberg D., Braitstein P., Yiannoutsos C.T., Wood R., Sprinz E., Schechter M., IeDEA A.o. Mortality associated with discordant responses to antiretroviral therapy in resource-constrained settings. JAIDS. 2010. Vol. 53. No. 1. pp. 70-77.
97. https://www.ncbi.nlm.nih.gov/pubmed/20035163
98. Tan R., Westfall A.O., Willig J.H., Mugavero M.J., Saag M.S., Kaslow R.A., Kempf M.C. Clinical outcome of HIV-infected antiretroviral-naive patients with discordant immunologic and virologic responses to highly active antiretroviral therapy. JAIDS. 2008. Vol. 47. No. 5. pp. 553-558. http://www.ncbi.nlm.nih.gov/pubmed/18285713
99. Batista G., Buve A., Ngom Gueye N.F., Manga N.M., Diop M.N., Ndiaye K., Thiam A., Ly F., Diallo A., Ndour C.T., Seydi M. Initial suboptimal CD4 reconstitution with antiretroviral therapy despite full viral suppression in a cohort of HIV-infected patients in Senegal. Med. Mal. Infect. 2015. Vol. 45. No. 6. pp. 199-206.
100. https://www.ncbi.nlm.nih.gov/pubmed/25907261
101. Baker J.V., Peng G., Rapkin J., Krason D., Reilly C., Cavert W.P., Abrams D.I., MacArthur R.D., Henry K., Neaton J.D., Terry Beirn Community Programs for Clinical Research on A. Poor initial CD4+ recovery with antiretroviral therapy prolongs immune depletion and increases risk for AIDS and non-AIDS diseases. JAIDS. 2008. Vol. 48. No. 5. pp. 541-546. https://www.ncbi.nlm.nih.gov/pubmed/18645520
102. Grabar S., Le Moing V., Goujard C., Leport C., Kazatchkine M.D., Costagliola D., Weiss L. Clinical outcome of patients with HIV-1 infection according to immunologic and virologic response after 6 months of highly active antiretroviral therapy. Ann. Intern. Med. 2000. Vol. 133. No. 6. pp. 401-410. http://www.ncbi.nlm.nih.gov/pubmed/10975957
103. Gutierrez F., Padilla S., Masia M., Iribarren J.A., Moreno S., Viciana P., Hernandez-Quero J., Aleman R., Vidal F., Salavert M., Blanco J.R., Leal M., Dronda F., Perez Hoyos S., del Amo J., Co R.M. Patients' characteristics and clinical implications of suboptimal CD4 T-cell gains after 1 year of successful antiretroviral therapy. Curr. HIV Res. 2008. Vol. 6. No. 2. pp. 100-107. https://www.ncbi.nlm.nih.gov/pubmed/18336257
104. Gilson R.J., Man S.L., Copas A., Rider A., Forsyth S., Hill T., Bansi L., Porter K., Gazzard B., Orkin C., Pillay D., Schwenk A., Johnson M., Easterbook P., Walsh J., Fisher M., Leen C., Anderson J., Sabin C.A., Group U.K.C.H.C.S. Discordant responses on starting highly active antiretroviral therapy: suboptimal CD4 increases despite early viral suppression in the UK Collaborative HIV Cohort (UK CHIC) Study. Hiv Med. 2010. Vol. 11. No. 2. pp. 152-160. https://www.ncbi.nlm.nih.gov/pubmed/19732175
105. Dronda F., Moreno S., Moreno A., Casado J.L., Perez-Elias M.J., Antela A. Long-term outcomes among antiretroviral-naive human immunodeficiency virus-infected patients with small increases in CD4+ cell counts after successful virologic suppression. Clin. Infect. Dis. 2002. Vol. 35. No. 8. pp. 1005-1009.
106. https://www.ncbi.nlm.nih.gov/pubmed/12355389
107. Nakanjako D., Kiragga A., Ibrahim F., Castelnuovo B., Kamya M.R., Easterbrook P.J. Sub-optimal CD4 reconstitution despite viral suppression in an urban cohort on antiretroviral therapy (ART) in sub-Saharan Africa: frequency and clinical significance. AIDS Res. Ther. 2008. Vol. 5. No. pp. 23.
108. https://www.ncbi.nlm.nih.gov/pubmed/18957083
109. Takuva S., Maskew M., Brennan A.T., Long L., Sanne I., Fox M.P. Poor CD4 recovery and risk of subsequent progression to AIDS or death despite viral suppression in a South African cohort. J. Int. AIDS Soc. 2014. Vol. 17. No. pp. 18651.
110. https://www.ncbi.nlm.nih.gov/pubmed/24594114
111. Zoufaly A., an der Heiden M., Kollan C., Bogner J.R., Fatkenheuer G., Wasmuth J.C., Stoll M., Hamouda O., van Lunzen J., ClinSurv Study G. Clinical outcome of HIV-infected patients with discordant virological and immunological response to antiretroviral therapy. J. Infect. Dis. 2011. Vol. 203. No. 3. pp. 364-371.
112. https://www.ncbi.nlm.nih.gov/pubmed/21208929
113. Loutfy M.R., Genebat M., Moore D., Raboud J., Chan K., Antoniou T., Milan D., Shen A., Klein M.B., Cooper C., Machouf N., Rourke S.B., Rachlis A., Tsoukas C., Montaner J.S., Walmsley S.L., Smieja M., Bayoumi A., Mills E., Hogg R.S., Collaboration C. A CD4+ cell count <200 cells per cubic millimeter at 2 years after initiation of combination antiretroviral therapy is associated with increased mortality in HIV-infected individuals with viral suppression. JAIDS. 2010. Vol. 55. No. 4. pp. 451-459. https://www.ncbi.nlm.nih.gov/pubmed/21105259
114. Falster K., Petoumenos K., Chuah J., Mijch A., Mulhall B., Kelly M., Cooper D.A., Australian H.I.V.O.D. Poor baseline immune function predicts an incomplete immune response to combination antiretroviral treatment despite sustained viral suppression. JAIDS. 2009. Vol. 50. No. 3. pp. 307-313.
115. https://www.ncbi.nlm.nih.gov/pubmed/19194311
116. Engsig F.N., Gerstoft J., Kronborg G., Larsen C.S., Pedersen G., Roge B., Jensen J., Nielsen L.N., Obel N. Long-term mortality in HIV patients virally suppressed for more than three years with incomplete CD4 recovery: a cohort study. BMC Infect. Dis. 2010. Vol. 10. No. pp. 318. http://www.ncbi.nlm.nih.gov/pubmed/21044307
117. Kaufmann G.R., Furrer H., Ledergerber B., Perrin L., Opravil M., Vernazza P., Cavassini M., Bernasconi E., Rickenbach M., Hirschel B., Battegay M., Swiss H.I.V.C.S. Characteristics, determinants, and clinical relevance of CD4 T cell recovery to <500 cells/microL in HIV type 1-infected individuals receiving potent antiretroviral therapy. Clin. Infect. Dis. 2005. Vol. 41. No. 3. pp. 361-372.
118. https://www.ncbi.nlm.nih.gov/pubmed/16007534
119. De Maria A., Cossarizza A. CD4saurus Rex &HIVelociraptor vs. development of clinically useful immunological markers: a Jurassic tale of frozen evolution. J. Transl. Med. 2011. Vol. 9. No. pp. 93. https://www.ncbi.nlm.nih.gov/pubmed/21679413
120. Engsig F.N., Zangerle R., Katsarou O., Dabis F., Reiss P., Gill J., Porter K., Sabin C., Riordan A., Fatkenheuer G., Gutierrez F., Raffi F., Kirk O., Mary-Krause M., Stephan C., de Olalla P.G., Guest J., Samji H., Castagna A., d'Arminio Monforte A., Skaletz-Rorowski A., Ramos J., Lapadula G., Mussini C., Force L., Meyer L., Lampe F., Boufassa F., Bucher H.C., De Wit S., Burkholder G.A., Teira R., Justice A.C., Sterling T.R., H M.C., Gerstoft J., Grarup J., May M., Chene G., Ingle S.M., Sterne J., Obel N., Antiretroviral Therapy Cohort C., the Collaboration of Observational H.I.V.E.R.E.i.E. Long-term mortality in HIV-positive individuals virally suppressed for >3 years with incomplete CD4 recovery. Clin. Infect. Dis. 2014. Vol. 58. No. 9. pp. 1312-1321.
121. https://www.ncbi.nlm.nih.gov/pubmed/24457342
122. Kelley C.F., Kitchen C.M., Hunt P.W., Rodriguez B., Hecht F.M., Kitahata M., Crane H.M., Willig J., Mugavero M., Saag M., Martin J.N., Deeks S.G. Incomplete peripheral CD4+ cell count restoration in HIV-infected patients receiving long-term antiretroviral treatment. Clin. Infect. Dis. 2009. Vol. 48. No. 6. pp. 787-794.
123. https://www.ncbi.nlm.nih.gov/pubmed/19193107
124. Kaufmann G.R., Perrin L., Pantaleo G., Opravil M., Furrer H., Telenti A., Hirschel B., Ledergerber B., Vernazza P., Bernasconi E., Rickenbach M., Egger M., Battegay M., Swiss H.I.V.C.S.G. CD4 T-lymphocyte recovery in individuals with advanced HIV-1 infection receiving potent antiretroviral therapy for 4 years: the Swiss HIV Cohort Study. Arch. Intern. Med. 2003. Vol. 163. No. 18. pp. 2187-2195.
125. http://www.ncbi.nlm.nih.gov/pubmed/14557216
126. Шмагель Н.Г., Шмагель К.В., Черешнев В.А. Клинические аспекты неэффективности высокоактивной антиретровирусной терапии. Инф. болезни, сс. 5-10. http://www.phdynasty.ru/katalog/zhurnaly/infektsionnye-bolezni/2011/tom-9-nomer-1/9797
127. Meyaard L., Otto S.A., Jonker R.R., Mijnster M.J., Keet R.P.M., Miedema F. Programmed death of T-cells in HIV-1 infection. Science. 1992. Vol. 257. No. 5067. pp. 217-219.
128. <Go to ISI>://WOS:A1992JC58500030
129. Li Q.S., Duan L.J., Estes J.D., Ma Z.M., Rourke T., Wang Y.C., Reilly C., Carlis J., Miller C.J., Haase A.T. Peak SIV replication in resting memory CD4(+) T cells depletes gut lamina propria CD4(+) T cells. Nature. 2005. Vol. 434. No. 7037. pp. 1148-1152. <Go to ISI>://WOS:000228693300047
130. Mattapallil J.J., Douek D.C., Hill B., Nishimura Y., Martin M., Roederer M. Massive infection and loss of memory CD4(+) T cells in multiple tissues during acute SIV infection. Nature. 2005. Vol. 434. No. 7037. pp. 1093-1097. <Go to ISI>://WOS:000228693300033
131. Picker L.J., Hagen S.I., Lum R., Reed-Inderbitzin E.F., Daly L.M., Sylwester A.W., Walker J.M., Siess D.C., Piatak M., Wang C.X., Allison D.B., Maino V.C., Lifson J.D., Kodama T., Axthelm M.K. Insufficient production and tissue delivery of CD4(+) memory T cells in rapidly progressive simian immunodeficiency virus infection. J. Exp. Med. 2004. Vol. 200. No. 10. pp. 1299-1314. <Go to ISI>://WOS:000225404300008
132. Mosier D.E., Gulizia R.J., Macisaac P.D., Torbett B.E., Levy J.A. Rapid loss of CD4+ T-cells in human-PBL-SCID mice by noncytopathic HIV isolates. Science. 1993. Vol. 260. No. 5108. pp. 689-692. <Go to ISI>://WOS:A1993KZ64100037
133. Finkel T.H., Tudorwilliams G., Banda N.K., Cotton M.F., Curiel T., Monks C., Baba T.W., Ruprecht R.M., Kupfer A. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV-infected and SIV-infected lymph nodes. Nat. Med. 1995. Vol. 1. No. 2. pp. 129-134. <Go to ISI>://WOS:A1995QX55800022
134. Giorgi J.V., Hultin L.E., McKeating J.A., Johnson T.D., Owens B., Jacobson L.P., Shih R., Lewis J., Wiley D.J., Phair J.P., Wolinsky S.M., Detels R. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J. Infect. Dis. 1999. Vol. 179. No. 4. pp. 859-870. <Go to ISI>://WOS:000079503800013
135. Zangerle R., Steinhuber S., Sarcletti M., Dierich M.P., Wachter H., Fuchs D., Most J. Serum HIV-1 RNA levels compared to soluble markers of immune activation to predict disease progression in HIV-1-infected individuals. Int. Arch. Allergy Imm. 1998. Vol. 116. No. 3. pp. 228-239. <Go to ISI>://WOS:000074827700008
136. Deeks S.G., Kitchen C.M., Liu L., Guo H., Gascon R., Narvaez A.B., Hunt P., Martin J.N., Kahn J.O., Levy J., McGrath M.S., Hecht F.M. Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood. 2004. Vol. 104. No. 4. pp. 942-947. http://www.ncbi.nlm.nih.gov/pubmed/15117761
137. Hazenberg M.D., Otto S.A., van Benthem B.H., Roos M.T., Coutinho R.A., Lange J.M., Hamann D., Prins M., Miedema F. Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS. 2003. Vol. 17. No. 13. pp. 1881-1888. http://www.ncbi.nlm.nih.gov/pubmed/12960820
138. Liu Z., Cumberland W.G., Hultin L.E., Kaplan A.H., Detels R., Giorgi J.V. CD8(+) T-lymphocyte activation in HIV-1 disease reflects an aspect of pathogenesis distinct from viral burden and immunodeficiency. J. Acq. Immun. Def. Synd. 1998. Vol. 18. No. 4. pp. 332-340. <Go to ISI>://WOS:000075124600004
139. Lackner A.A., Lederman M.M., Rodriguez B. HIV pathogenesis: the host. Cold Spring Harb Perspect Med. 2012, Vol. 2. a007005.
140. http://www.ncbi.nlm.nih.gov/pubmed/22951442
141. Paiardini M., Muller-Trutwin M. HIV-associated chronic immune activation. Immunol. Rev. 2013. Vol. 254. No. pp. 78-101. <Go to ISI>://WOS:000320390900006
142. Budd R.C. Activation-induced cell death. Curr. Opin. Immunol. 2001. Vol. 13. No. 3. pp. 356-362. http://www.ncbi.nlm.nih.gov/pubmed/11406369
143. Green D.R., Droin N., Pinkoski M. Activation-induced cell death in T cells. Immunol. Rev. 2003. Vol. 193. No. pp. 70-81. http://www.ncbi.nlm.nih.gov/pubmed/12752672
144. Brenner D., Krammer P.H., Arnold R. Concepts of activated T cell death. Crit. Rev. Oncol. Hematol. 2008. Vol. 66. No. 1. pp. 52-64. http://www.ncbi.nlm.nih.gov/pubmed/18289867
145. Funderburg N., Luciano A.A., Jiang W., Rodriguez B., Sieg S.F., Lederman M.M. Toll-like receptor ligands induce human T cell activation and death, a model for HIV pathogenesis. PLoS One. 2008, Vol. 3. e1915.
146. http://www.ncbi.nlm.nih.gov/pubmed/18382686
147. Benito J.M., Lopez M., Lozano S., Ballesteros C., Martinez P., Gonzalez-Lahoz J., Soriano V. Differential upregulation of CD38 on different T-cell subsets may influence the ability to reconstitute CD4+ T cells under successful highly active antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 2005. Vol. 38. No. 4. pp. 373-381.
148. http://www.ncbi.nlm.nih.gov/pubmed/15764953
149. Lederman M.M., Calabrese L., Funderburg N.T., Clagett B., Medvik K., Bonilla H., Gripshover B., Salata R.A., Taege A., Lisgaris M., McComsey G.A., Kirchner E., Baum J., Shive C., Asaad R., Kalayjian R.C., Sieg S.F., Rodriguez B. Immunologic failure despite suppressive antiretroviral therapy is related to activation and turnover of memory CD4 cells. J. Infect. Dis. 2011. Vol. 204. No. 8. pp. 1217-1226.
150. http://www.ncbi.nlm.nih.gov/pubmed/21917895
151. Hunt P.W., Brenchley J., Sinclair E., McCune J.M., Roland M., Page-Shafer K., Hsue P., Emu B., Krone M., Lampiris H., Douek D., Martin J.N., Deeks S.G. Relationship between T cell activation and CD4(+) T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. J. Infect. Dis. 2008. Vol. 197. No. 1. pp. 126-133. <Go to ISI>://WOS:000252399000020
152. Hunt P.W., Martin J.N., Sinclair E., Bredt B., Hagos E., Lampiris H., Deeks S.G. T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy. J. Infect. Dis. 2003. Vol. 187. No. 10. pp. 1534-1543.
153. http://www.ncbi.nlm.nih.gov/pubmed/12721933
154. Marchetti G., Gori A., Casabianca A., Magnani M., Franzetti F., Clerici M., Perno C.F., Monforte A., Galli M., Meroni L. Comparative analysis of T-cell turnover and homeostatic parameters in HIV-infected patients with discordant immune-virological responses to HAART. AIDS. 2006. Vol. 20. No. 13. pp. 1727-1736.
155. http://www.ncbi.nlm.nih.gov/pubmed/16931937
156. Massanella M., Negredo E., Perez-Alvarez N., Puig J., Ruiz-Hernandez R., Bofill M., Clotet B., Blanco J. CD4 T-cell hyperactivation and susceptibility to cell death determine poor CD4 T-cell recovery during suppressive HAART. AIDS. 2010. Vol. 24. No. 7. pp. 959-968. http://www.ncbi.nlm.nih.gov/pubmed/20177358
157. Massanella M., Curriu M., Carrillo J., Gomez E., Puig J., Navarro J., Dalmau J., Martinez-Picado J., Crespo M., Cabrera C., Negredo E., Clotet B., Blanco J. Assessing main death pathways in T lymphocytes from HIV infected individuals. Cytometry A. 2013. Vol. 83. No. 7. pp. 648-658. http://www.ncbi.nlm.nih.gov/pubmed/23650261
158. Benveniste O., Flahault A., Rollot F., Elbim C., Estaquier J., Pedron B., Duval X., Dereuddre-Bosquet N., Clayette P., Sterkers G., Simon A., Ameisen J.C., Leport C. Mechanisms involved in the low-level regeneration of CD4+ cells in HIV-1-infected patients receiving highly active antiretroviral therapy who have prolonged undetectable plasma viral loads. J. Infect. Dis. 2005. Vol. 191. No. 10. pp. 1670-1679. http://www.ncbi.nlm.nih.gov/pubmed/15838794
159. Negredo E., Massanella M., Puig J., Perez-Alvarez N., Gallego-Escuredo J.M., Villarroya J., Villarroya F., Molto J., Santos J.R., Clotet B., Blanco J. Nadir CD4 T cell count as predictor and high CD4 T cell intrinsic apoptosis as final mechanism of poor CD4 T cell recovery in virologically suppressed HIV-infected patients: clinical implications. Clin. Infect. Dis. 2010. Vol. 50. No. 9. pp. 1300-1308.
160. http://www.ncbi.nlm.nih.gov/pubmed/20367229
161. Erikstrup C., Kronborg G., Lohse N., Ostrowski S.R., Gerstoft J., Ullum H. T-cell dysfunction in HIV-1-infected patients with impaired recovery of CD4 cells despite suppression of viral replication. J. Acquir. Immune Defic. Syndr. 2010. Vol. 53. No. 3. pp. 303-310. http://www.ncbi.nlm.nih.gov/pubmed/20048679
162. Mendez-Lagares G., Garcia-Perganeda A., del Mar del Pozo-Balado M., Genebat M., Ruiz-Mateos E., Garcia Garcia M., Munoz-Fernandez M.A., Pacheco Y.M., Leal M. Differential alterations of the CD4 and CD8 T cell subsets in HIV-infected patients on highly active antiretroviral therapy with low CD4 T cell restoration. J. Antimicrob. Chemother. 2012. Vol. 67. No. 5. pp. 1228-1237.
163. http://www.ncbi.nlm.nih.gov/pubmed/22287235
164. Grabmeier-Pfistershammer K., Steinberger P., Rieger A., Leitner J., Kohrgruber N. Identification of PD-1 as a unique marker for failing immune reconstitution in HIV-1-infected patients on treatment. J. Acquir. Immune Defic. Syndr. 2011. Vol. 56. No. 2. pp. 118-124. http://www.ncbi.nlm.nih.gov/pubmed/20980914
165. Nakanjako D., Ssewanyana I., Mayanja-Kizza H., Kiragga A., Colebunders R., Manabe Y.C., Nabatanzi R., Kamya M.R., Cao H. High T-cell immune activation and immune exhaustion among individuals with suboptimal CD4 recovery after 4 years of antiretroviral therapy in an African cohort. BMC Infect. Dis. 2011. Vol. 11. No. pp. 43.
166. http://www.ncbi.nlm.nih.gov/pubmed/21299909
167. Wherry E.J., Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 2015. Vol. 15. No. 8. pp. 486-499.
168. http://www.ncbi.nlm.nih.gov/pubmed/26205583
169. Barber D.L., Wherry E.J., Masopust D., Zhu B., Allison J.P., Sharpe A.H., Freeman G.J., Ahmed R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006. Vol. 439. No. 7077. pp. 682-687.
170. http://www.ncbi.nlm.nih.gov/pubmed/16382236
171. Florence E., Lundgren J., Dreezen C., Fisher M., Kirk O., Blaxhult A., Panos G., Katlama C., Vella S., Phillips A., Euro S.S.G. Factors associated with a reduced CD4 lymphocyte count response to HAART despite full viral suppression in the EuroSIDA study. HIV Med. 2003. Vol. 4. No. 3. pp. 255-262. http://www.ncbi.nlm.nih.gov/pubmed/12859325
172. Isgro A., Leti W., De Santis W., Marziali M., Esposito A., Fimiani C., Luzi G., Pinti M., Cossarizza A., Aiuti F., Mezzaroma I. Altered clonogenic capability and stromal cell function characterize bone marrow of HIV-infected subjects with low CD4+ T cell counts despite viral suppression during HAART. Clin. Infect. Dis. 2008. Vol. 46. No. 12. pp. 1902-1910. http://www.ncbi.nlm.nih.gov/pubmed/18462177
173. Tanaskovic S., Fernandez S., French M.A., Price R.I., Song S., Robins P.D., Price P. Thymic tissue is not evident on high-resolution computed tomography and [(1)(8)F]fluoro-deoxy-glucose positron emission tomography scans of aviraemic HIV patients with poor recovery of CD4(+) T cells. AIDS. 2011. Vol. 25. No. 9. pp. 1235-1237.
174. http://www.ncbi.nlm.nih.gov/pubmed/21505302
175. Teixeira L., Valdez H., McCune J.M., Koup R.A., Badley A.D., Hellerstein M.K., Napolitano L.A., Douek D.C., Mbisa G., Deeks S., Harris J.M., Barbour J.D., Gross B.H., Francis I.R., Halvorsen R., Asaad R., Lederman M.M. Poor CD4 T cell restoration after suppression of HIV-1 replication may reflect lower thymic function. AIDS. 2001. Vol. 15. No. 14. pp. 1749-1756. http://www.ncbi.nlm.nih.gov/pubmed/11579235
176. Li T., Wu N., Dai Y., Qiu Z., Han Y., Xie J., Zhu T., Li Y. Reduced thymic output is a major mechanism of immune reconstitution failure in HIV-infected patients after long-term antiretroviral therapy. Clin. Infect. Dis. 2011. Vol. 53. No. 9. pp. 944-951.
177. http://www.ncbi.nlm.nih.gov/pubmed/21960716
178. Marziali M., De Santis W., Carello R., Leti W., Esposito A., Isgro A., Fimiani C., Sirianni M.C., Mezzaroma I., Aiuti F. T-cell homeostasis alteration in HIV-1 infected subjects with low CD4 T-cell count despite undetectable virus load during HAART. AIDS. 2006. Vol. 20. No. 16. pp. 2033-2041. http://www.ncbi.nlm.nih.gov/pubmed/17053349
179. Colle J.H., Moreau J.L., Fontanet A., Lambotte O., Joussemet M., Jacod S., Delfraissy J.F., Theze J. Regulatory dysfunction of the interleukin-7 receptor in CD4 and CD8 lymphocytes from HIV-infected patients – effects of antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 2006. Vol. 42. No. 3. pp. 277-285.
180. http://www.ncbi.nlm.nih.gov/pubmed/16810123
181. Bellistri G.M., Casabianca A., Merlini E., Orlandi C., Ferrario G., Meroni L., Galli M., Magnani M., Monforte A., Marchetti G. Increased bone marrow interleukin-7 (IL-7)/IL-7R levels but reduced IL-7 responsiveness in HIV-positive patients lacking CD4+ gain on antiviral therapy. PLoS One. 2010, Vol. 5. e15663.
182. http://www.ncbi.nlm.nih.gov/pubmed/21209878
183. Hodge J.N., Srinivasula S., Hu Z., Read S.W., Porter B.O., Kim I., Mican J.M., Paik C., Degrange P., Di Mascio M., Sereti I. Decreases in IL-7 levels during antiretroviral treatment of HIV infection suggest a primary mechanism of receptor-mediated clearance. Blood. 2011. Vol. 118. No. 12. pp. 3244-3253.
184. http://www.ncbi.nlm.nih.gov/pubmed/21778338
185. Schacker T.W., Brenchley J.M., Beilman G.J., Reilly C., Pambuccian S.E., Taylor J., Skarda D., Larson M., Douek D.C., Haase A.T. Lymphatic tissue fibrosis is associated with reduced numbers of naive CD4(+) T cells in human immunodeficiency virus type 1 infection. Clin. Vaccine Immunol. 2006. Vol. 13. No. 5. pp. 556-560.
186. <Go to ISI>://WOS:000237506500005
187. Schacker T.W., Nguyen P.L., Beilman G.J., Wolinsky S., Larson M., Reilly C., Haase A.T. Collagen deposition in HIV-1 infected lymphatic tissues and T cell homeostasis. J. Clin. Invest. 2002. Vol. 110. No. 8. pp. 1133-1139. <Go to ISI>://WOS:000178793700012
188. Zeng M., Smith A.J., Wietgrefe S.W., Southern P.J., Schacker T.W., Reilly C.S., Estes J.D., Burton G.F., Silvestri G., Lifson J.D., Carlis J.V., Haase A.T. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J. Clin. Invest. 2011. Vol. 121. No. 3. pp. 998-1008. <Go to ISI>://WOS:000287991000020
189. Capitini C.M., Chisti A.A., Mackall C.L. Modulating T-cell homeostasis with IL-7: preclinical and clinical studies. J. Intern. Med. 2009. Vol. 266. No. 2. pp. 141-153. <Go to ISI>://WOS:000267883100001
190. D'Amico R., Yang Y., Mildvan D., Evans S.R., Schnizlein-Bick C.T., Hafner R., Webb N., Basar M., Zackin R., Jacobson M.A. Lower CD4+ T lymphocyte nadirs may indicate limited immune reconstitution in HIV-1 infected individuals on potent antiretroviral therapy: analysis of immunophenotypic marker results of AACTG 5067. J. Clin. Immunol. 2005. Vol. 25. No. 2. pp. 106-115. http://www.ncbi.nlm.nih.gov/pubmed/15821887
191. Moore R.D., Keruly J.C. CD4+ cell count 6 years after commencement of highly active antiretroviral therapy in persons with sustained virologic suppression. Clin. Infect. Dis. 2007. Vol. 44. No. 3. pp. 441-446. http://www.ncbi.nlm.nih.gov/pubmed/17205456
192. Gandhi R.T., Spritzler J., Chan E., Asmuth D.M., Rodriguez B., Merigan T.C., Hirsch M.S., Shafer R.W., Robbins G.K., Pollard R.B., Team A. Effect of baseline- and treatment-related factors on immunologic recovery after initiation of antiretroviral therapy in HIV-1-positive subjects: results from ACTG 384. J. Acquir. Immune Defic. Syndr. 2006. Vol. 42. No. 4. pp. 426-434. http://www.ncbi.nlm.nih.gov/pubmed/16810109
193. Marcus J.L., Leyden W.A., Chao C.R., Xu L., Quesenberry C.P., Jr., Tien P.C., Klein D.B., Towner W.J., Horberg M.A., Silverberg M.J. Differences in response to antiretroviral therapy by sex and hepatitis C infection status. AIDS Patient Care STDS. 2015. Vol. 29. No. 7. pp. 370-378. http://www.ncbi.nlm.nih.gov/pubmed/26061798
194. Greub G., Ledergerber B., Battegay M., Grob P., Perrin L., Furrer H., Burgisser P., Erb P., Boggian K., Piffaretti J.C., Hirschel B., Janin P., Francioli P., Flepp M., Telenti A. Clinical progression, survival, and immune recovery during antiretroviral therapy in patients with HIV-1 and hepatitis C virus coinfection: the Swiss HIV Cohort Study. Lancet. 2000. Vol. 356. No. 9244. pp. 1800-1805. http://www.ncbi.nlm.nih.gov/pubmed/11117912
195. Potter M., Odueyungbo A., Yang H., Saeed S., Klein M.B., Canadian Co-infection Cohort Study I. Impact of hepatitis C viral replication on CD4+ T-lymphocyte progression in HIV-HCV coinfection before and after antiretroviral therapy. AIDS. 2010. Vol. 24. No. 12. pp. 1857-1865. http://www.ncbi.nlm.nih.gov/pubmed/20479633
196. Hogg R., Lima V., Sterne J., Grabar S., Battegay M., Bonarek M., A.D. M., Esteve A., Gill J., Harris R., Justice A. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet. 2008. Vol. 372. No. 9635. pp. 293-299. http://www.ncbi.nlm.nih.gov/pubmed/18657708
197. Piketty C., Weiss L., Thomas F., Mohamed A.S., Belec L., Kazatchkine M.D. Long-term clinical outcome of human immunodeficiency virus-infected patients with discordant immunologic and virologic responses to a protease inhibitor-containing regimen. J. Infect. Dis. 2001. Vol. 183. No. 9. pp. 1328-1335.
198. http://www.ncbi.nlm.nih.gov/pubmed/11294663
199. Damtie D., Yismaw G., Woldeyohannes D., Anagaw B. Common opportunistic infections and their CD4 cell correlates among HIV-infected patients attending at antiretroviral therapy clinic of Gondar University Hospital, Northwest Ethiopia. BMC Res. Notes. 2013. Vol. 6. No. pp. 534. http://www.ncbi.nlm.nih.gov/pubmed/24330921
200. Severe P., Juste M.A., Ambroise A., Eliacin L., Marchand C., Apollon S., Edwards A., Bang H., Nicotera J., Godfrey C., Gulick R.M., Johnson W.D., Jr., Pape J.W., Fitzgerald D.W. Early versus standard antiretroviral therapy for HIV-infected adults in Haiti. N. Engl. J. Med. 2010. Vol. 363. No. 3. pp. 257-265.
201. http://www.ncbi.nlm.nih.gov/pubmed/20647201
202. Kaplan R.C., Kingsley L.A., Gange S.J., Benning L., Jacobson L.P., Lazar J., Anastos K., Tien P.C., Sharrett A.R., Hodis H.N. Low CD4+ T-cell count as a major atherosclerosis risk factor in HIV-infected women and men. AIDS. 2008. Vol. 22. No. 13. pp. 1615-1624. http://www.ncbi.nlm.nih.gov/pubmed/18670221
203. Phillips A.N., Neaton J., Lundgren J.D. The role of HIV in serious diseases other than AIDS. AIDS. 2008. Vol. 22. No. 18. pp. 2409-2418.
204. http://www.ncbi.nlm.nih.gov/pubmed/19005264
205. Ho J.E., Scherzer R., Hecht F.M., Maka K., Selby V., Martin J.N., Ganz P., Deeks S.G., Hsue P.Y. The association of CD4+ T-cell counts and cardiovascular risk in treated HIV disease. AIDS. 2012. Vol. 26. No. 9. pp. 1115-1120.
206. http://www.ncbi.nlm.nih.gov/pubmed/22382147
207. van Lelyveld S.F., Gras L., Kesselring A., Zhang S., De Wolf F., Wensing A.M., Hoepelman A.I., study A.n.o.c. Long-term complications in patients with poor immunological recovery despite virological successful HAART in Dutch ATHENA cohort. AIDS. 2012. Vol. 26. No. 4. pp. 465-474.
208. http://www.ncbi.nlm.nih.gov/pubmed/22112603
209. Deeks S.G. HIV infection, inflammation, immunosenescence, and aging. Annu. Rev. Med. 2011. Vol. 62. No. pp. 141-155. <Go to ISI>://WOS:000287956900011
Дополнительные файлы
![]() |
1. Соглашение о передаче прав | |
Тема | ||
Тип | Прочее | |
Скачать
(1004KB)
|
Метаданные ▾ |
Рецензия
Для цитирования:
Шмагель К.В. ДИСКОРДАНТНЫЙ ОТВЕТ CD4+ T-ЛИМФОЦИТОВ НА АНТИРЕТРОВИРУСНУЮ ТЕРАПИЮ. ВИЧ-инфекция и иммуносупрессии. 2019;11(1). https://doi.org/10.22328/2077-9828-2019-11-1-