Preview

ВИЧ-инфекция и иммуносупрессии

Расширенный поиск

ДИСКОРДАНТНЫЙ ОТВЕТ CD4+ T-ЛИМФОЦИТОВ НА АНТИРЕТРОВИРУСНУЮ ТЕРАПИЮ

https://doi.org/10.22328/2077-9828-2019-11-1-16-30

Полный текст:

Аннотация

Стандартным результатом проведения антиретровирусной терапии у ВИЧ-инфицированных пациентов является подавление репликации вируса и восстановление численности CD4+ T-лимфоцитов. Однако у части больных (приблизительно у 20%) на фоне низкой вирусной нагрузки отмечается нарушение регенерации иммунокомпетентных клеток. В литературе для них был введен термин «immunological nonresponders» (англ.)  — «иммунологические неответчики». Причиной развития дискордантного иммунологического ответа на терапию может быть как усиление гибели, так и уменьшение образования CD4+ T-клеток. Однако механизмы формирования низкого восстановительного потенциала иммунитета остаются недостаточно изученными. Известно, что у иммунологических неответчиков, по сравнению с пациентами, которые демонстрируют конкордантный ответ на лечение, наблюдается усиленная пролиферация лимфоцитов, повышенная иммунная активация, сокращение времени жизни CD4+ T-лимфоцитов. Состояние их иммунной системы характеризуется более яркими проявлениями истощения и старения. Это приводит к раннему и частому появлению СПИД-ассоциированных заболеваний. Кроме того, иммунологические неответчики подвержены высокому риску возникновения не ассоциированных со СПИДом болезней, что обусловлено развитием выраженного системного воспаления. Представленный обзор направлен на освещение важной проблемы, нередко возникающей при проведении антиретровирусной терапии, и привлечение к ее решению внимания специалистов.

 

Об авторе

К. В. Шмагель
Пермский федеральный исследовательский центр Уральского отделения Российской академии наук; Пермский государственный национальный исследовательский университет
Россия

зав. лабораторией экологической иммунологии Института экологии и генетики микроорганизмов Уральского отделения Российской академии наук — филиал ФГБУН «Пермский федеральный исследовательский центр Уральского отделения Российской академии наук»;

профессор кафедры микробиологии и иммунологии ФГБОУ ВО «Пермский государственный национальный исследовательский университет»



Список литературы

1. Palella F.J., Delaney K.M., Moorman A.C., Loveless M.O., Fuhrer J., Satten G.A., Aschman D.J., Holmberg S.D., Investigators H.O.S. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. New Engl. J. Med., 1998. Vol. 338, No. 13, pp. 853–860. URL: ://WOS:000072669800001.

2. Evans T.G., Bonnez W., Soucier H.R., Fitzgerald T., Gibbons D.C., Reichman R.C. Highly active antiretroviral therapy results in a decrease in CD8(+) T cell activation and preferential reconstitution of the peripheral CD4(+) T cell population with memory rather than I cells. Antivir. Res., 1998, Vol. 39, No. 3, pp. 163–173. URL: ://WOS:000076934000002.

3. Tilling R., Kinloch S., Goh L.E., Cooper D., Perrin L., Lampe F., Zaunders J., Hoen B., Tsoukas C., Andersson J., Janossy G., Grp Q.S. Parallel decline of CD8+/CD38++ T cells and viraemia in response to quadruple highly active antiretroviral therapy in primary HIV infection. AIDS, 2002, Vol. 16, No. 4, pp. 589–596. URL: ://WOS:000174367100010.

4. Hileman C.O., Funderburg N.T. Inflammation, immune activation, and antiretroviral therapy in HIV. Curr. HIV/AIDS Rep., 2017, Vol. 14, No. 3, pp. 93–100. URL: https://www.ncbi.nlm.nih.gov/pubmed/28434169.

5. Gulick R.M., Mellors J.W., Havlir D., Eron J.J., Gonzalez C., McMahon D., Richman D.D., Valentine F.T., Jonas L., Meibohm A., Emini E.A., Chodakewitz J.A. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. New Engl. J. Med., 1997, Vol. 337, No. 11, pp. 734–739. URL: ://WOS:A1997XV17400002.

6. Hammer S.M., Squires K.E., Hughes M.D., Grimes J.M., Demeter L.M., Currier J.S., Eron J.J., Feinberg J.E., Balfour H.H., Dayton L.R., Chodakewitz J.A., Fischl M.A. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. New Engl. J. Med., 1997, Vol. 337, No. 11, pp. 725–733. URL: ISI>://WOS:A1997XV17400001.

7. Laskey S.B., Siliciano R.F. A mechanistic theory to explain the efficacy of antiretroviral therapy. Nat. Rev. Microbiol., 2014, Vol. 12, No. 11, pp. 772–780. URL: https://www.ncbi.nlm.nih.gov/pubmed/25263222.

8. Hill A.L., Rosenbloom D.I., Fu F., Nowak M.A., Siliciano R.F. Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1. Proc. Natl. Acad. Sci. USA, 2014, Vol. 111, No. 37, pp. 13 475–13 480. URL: https://www.ncbi.nlm.nih.gov/pubmed/25097264.

9. Bucy R.P., Hockett R.D., Derdeyn C.A., Saag M.S., Squires K., Sillers M., Mitsuyasu R.T., Kilby J.M. Initial increase in blood CD4(+) lymphocytes after HIV antiretroviral therapy reflects redistribution from lymphoid tissues. J. Clin. Invest., 1999, Vol. 103, No. 10, pp. 1391–1398. URL: ://WOS:000083467200005.

10. Pakker N.G., Notermans D.W., de Boer R.J., Roos M.T.L., de Wolf F., Hill A., Leonard J.M., Danner S.A., Miedema F., Schellekens P.T.A. Biphasic kinetics of peripheral blood T cells after triple combination therapy in HIV-1 infection: A composite of redistribution and proliferation. Nat. Med., 1998, Vol. 4, No. 2, pp. 208–214. URL: ://WOS:000072249800037.

11. Le Moing V., Thiebaut R., Chene G., Leport C., Cailleton V., Michelet C., Fleury H., Herson S., Raffi F., Group A.S. Predictors of long-term increase in CD4(+) cell counts in human immunodeficiency virus-infected patients receiving a protease inhibitor-containing antiretroviral regimen. J. Infect. Dis., 2002, Vol. 185, No. 4, pp. 471–480. URL: http://www.ncbi.nlm.nih.gov/pubmed/11865399.

12. Lok J.J., Bosch R.J., Benson C.A., Collier A.C., Robbins G.K., Shafer R.W., Hughes M.D., Team A. Long-term increase in CD4(+) T-cell counts during combination antiretroviral therapy for HIV-1 infection. AIDS, 2010, Vol. 24, No. 12, pp. 1867–1876. URL: ISI>://WOS:000279697400008.

13. Tchao N.K., Turka L.A. Lymphodepletion and Homeostatic Proliferation: Implications for Transplantation. Am. J. Transplant., 2012., Vol. 12., No. 5, pp. 1079–1090. URL: ://WOS:000303235100006.

14. Kieper W.C., Troy A., Burghardt J.T., Ramsey C., Lee J.Y., Jiang H.Q., Dummer W., Shen H., Cebra J.J., Surh C.D. Cutting edge: Recent immune status determines the source of antigens that drive homeostatic T cell expansion. J. Immunol., 2005, Vol. 174, No. 6, pp. 3158–3163. URL: ://WOS:000227510900005.

15. Min B., Yamane H., Hu-Li J., Paul W.E. Spontaneous and homeostatic proliferation of CD4 T cells are regulated by different mechanisms. J. Immunol., 2005., Vol. 174., No. 10, pp. 6039–6044. URL: ://WOS:000228958900018.

16. Surh C.D., Sprent J. Homeostasis of I and memory T cells. Immunity, 2008, Vol. 29, No. 6, pp. 848–862. URL: ISI>://WOS:000262012400006.

17. Goldrath A.W., Bevan M.J. Low-affinity ligands for the TCR drive proliferation of mature CD8(+) T cells in lymphopenic hosts. Immunity, 1999,Vol. 11, No. 2, pp. 183–190. URL: ://WOS:000082383400007.

18. Martin B., Bourgeois C., Dautigny N., Lucas B. On the role of MHC class II molecules in the survival and lymphopenia-induced proliferation of peripheral CD4(+) T cells. Proc. Natl. Acad. Sci. USA, 2003, Vol. 100, No. 10, pp. 6021–6026. URL: ://WOS:000182939400082.

19. Takeda S., Rodewald H.R., Arakawa H., Bluethmann H., Shimizu T. MHC class II molecules are not required for survival of newly generated CD4+T cells, but affect their long-term life span. Immunity, 1996, Vol. 5, No. 3, pp. 217–228. URL: http://www.ncbi.nlm.nih.gov/pubmed/8808677.

20. Tanchot C., Lemonnier F.A., Perarnau B., Freitas A.A., Rocha B. Differential requirements for survival and proliferation of CD8 I or memory T cells. Science, 1997, Vol. 276, No. 5321, pp. 2057–2062. URL: http://www.ncbi.nlm.nih.gov/pubmed/9197272.

21. Fry T.J., Mackall C.L. The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J. Immunol., 2005, Vol. 174, No. 11, pp. 6571–6576. URL: http://www.ncbi.nlm.nih.gov/pubmed/15905493.

22. Tan J.T., Dudl E., LeRoy E., Murray R., Sprent J., Weinberg K.I., Surh C.D. IL-7 is critical for homeostatic proliferation and survival of I T cells. Proc. Natl. Acad. Sci. USA, 2001, Vol. 98, No. 15, pp. 8732–8737. URL: ://WOS:000169967000094.

23. Neujahr D.C., Chen C.Q., Huang X., Markmann J.F., Cobbold S., Waldmann H., Sayegh M.H., Hancock W.W., Turka L.A. Accelerated memory cell homeostasis during T cell depletion and approaches to overcome it. J. Immunol., 2006, Vol. 176, No. 8, pp. 4632–4639. URL: ISI>://WOS:000238769000020.

24. Chalasani G., Dai Z.H., Konieczny B.T., Baddoura F.K., Lakkis F.G. Recall and propagation of allospecific memory T cells independent of secondary lymphoid organs. Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, No. 9, pp. 6175–6180. URL: ://WOS:000175377800078.

25. Murali-Krishna K., Lau L.L., Sambhara S., Lemonnier F., Altman J., Ahmed R. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science, 1999, Vol. 286, No. 5443, pp. 1377–1381. URL: ://WOS:000083675500048.

26. Swain S.L., Hu H., Huston G. Class II-independent generation of CD4 memory T cells from effectors. Science, 1999, Vol. 286, No. 5443, pp. 1381–1383. URL: http://www.ncbi.nlm.nih.gov/pubmed/10558997.

27. Tan J.T., Ernst B., Kieper W.C., LeRoy E., Sprent J., Surh C.D. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med., 2002, Vol. 195, No. 12, pp. 1523–1532. URL: https://www.ncbi.nlm.nih.gov/pubmed/12070280.

28. Judge A.D., Zhang X.H., Fujii H., Surh C.D., Sprent J. Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8(+) T cells. J. Exp. Med., 2002, Vol. 196, No. 7, pp. 935–946. URL: ://WOS:000178518100007.

29. Mohan M., Kaushal D., Aye P.P., Alvarez X., Veazey R.S., Lackner A.A. Focused Examination of the Intestinal Epithelium Reveals Transcriptional Signatures Consistent with Disturbances in Enterocyte Maturation and Differentiation during the Course of SIV Infection. PloS One, 2013, Vol. 8, pp. e60122. URL: ://WOS:000317909600013.

30. Sharpstone D., Neild P., Crane R., Taylor C., Hodgson C., Sherwood R., Gazzard B., Bjarnason I. Small intestinal transit, absorption, and permeability in patients with AIDS with and without diarrhoea. Gut, 1999, Vol. 45, No. 1, pp. 70–76. URL: ://WOS:000081079400016.

31. Klatt N.R., Funderburg N.T., Brenchley J.M. Microbial translocation, immune activation, and HIV disease. Trends Microbiol., 2013, Vol. 21, No. 1, pp. 6–13. URL: http://www.ncbi.nlm.nih.gov/pubmed/23062765.

32. Nazli A., Chan O., Dobson-Belaire W.N., Ouellet M., Tremblay M.J., Gray-Owen S.D., Arsenault A.L., Kaushic C. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PloS Pathog., 2010, Vol. 6, pp. e1000852. URL: ISI>://WOS:000277722400024.

33. Smith A.J., Schacker T.W., Reilly C.S., Haase A.T. A role for syndecan-1 and claudin-2 in microbial translocation during HIV-1 infection. JAIDS, 2010, Vol. 55, No. 3, pp. 306–315. URL: ://WOS:000283847400006.

34. Gordon S.N., Cervasi B., Odorizzi P., Silverman R., Aberra F., Ginsberg G., Estes J.D., Paiardini M., Frank I., Silvestri G. Disruption of intestinal CD4+ T cell homeostasis is a key marker of systemic CD4+ T cell activation in HIV-infected individuals. J. Immunol., 2010, Vol. 185, No. 9, pp. 5169–5179. URL: http://www.ncbi.nlm.nih.gov/pubmed/20889546.

35. Klatt N.R., Estes J.D., Sun X., Ortiz A.M., Barber J.S., Harris L.D., Cervasi B., Yokomizo L.K., Pan L., Vinton C.L., Tabb B., Canary L.A., Dang Q., Hirsch V.M., Alter G., Belkaid Y., Lifson J.D., Silvestri G., Milner J.D., Paiardini M., Haddad E.K., Brenchley J.M. Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol., 2012, Vol. 5, No. 6, pp. 646–657. URL: ://WOS:000310572800007.

36. Brenchley J.M., Price D.A., Schacker T.W., Asher T.E., Silvestri G., Rao S., Kazzaz Z., Bornstein E., Lambotte O., Altmann D., Blazar B.R., Rodriguez B., Teixeira-Johnson L., Landay A., Martin J.N., Hecht F.M., Picker L.J., Lederman M.M., Deeks S.G., Douek D.C. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med., 2006, Vol. 12, No. 12, pp. 1365–1371. URL: http://www.ncbi.nlm.nih.gov/pubmed/17115046.

37. Estes J.D., Harris L.D., Klatt N.R., Tabb B., Pittaluga S., Paiardini M., Barclay G.R., Smedley J., Pung R., Oliveira K.M., Hirsch V.M., Silvestri G., Douek D.C., Miller C.J., Haase A.T., Lifson J., Brenchley J.M. Damaged intestinal epithelial integrity linked to microbial translocation in pathogenic simian immunodeficiency virus infections. PloS Pathog., 2010, Vol. 6, pp. e1001052. URL: ISI>://WOS:000281399900025.

38. Marchetti G., Bellistri G.M., Borghi E., Tincati C., Ferramosca S., La Francesca M., Morace G., Gori A., Monforte A.D. Microbial translocation is associated with sustained failure in CD4+ T-cell reconstitution in HIV-infected patients on long-term highly active antiretroviral therapy. AIDS, 2008, Vol. 22, No. 15, pp. 2035–2038. URL: ://WOS:000259680100016.

39. Leon A., Leal L., Torres B., Lucero C., Inciarte A., Arnedo M., Plana M., Vila J., Gatell J.M., Garcia F. Association of microbial translocation biomarkers with clinical outcome in controllers HIV-infected patients. AIDS, 2015, Vol. 29, No. 6, pp. 675–681. URL: ISI>://WOS:000351688200005.

40. Marchetti G., Cozzi-Lepri A., Merlini E., Bellistri G.M., Castagna A., Galli M., Verucchi G., Antinori A., Costantini A., Giacometti A., di Caro A., Monforte A.D., Grp I.F.S. Microbial translocation predicts disease progression of HIV-infected antiretroviral-I patients with high CD4(+) cell count. AIDS, 2011, Vol. 25, No. 11, pp. 1385–1394. URL: ://WOS:000292183900006.

41. Sandler N.G., Wand H., Roque A., Law M., Nason M.C., Nixon D.E., Pedersen C., Ruxrungtham K., Lewin S.R., Emery S., Neaton J.D., Brenchley J.M., Deeks S.G., Sereti I., Douek D.C., Grp I.S.S. Plasma Levels of Soluble CD14 Independently Predict Mortality in HIV Infection. J. Infect. Dis., 2011, Vol. 203, No. 6, pp. 780–790. URL: ://WOS:000287742700006.

42. Guihot A., Bourgarit A., Carcelain G., Autran B. Immune reconstitution after a decade of combined antiretroviral therapies for human immunodeficiency virus. Trends Immunol., 2011, Vol. 32, No. 3, pp. 131–137. URL: http://www.ncbi.nlm.nih.gov/pubmed/21317040.

43. Rallon N., Sempere-Ortells J.M., Soriano V., Benito J.M. Central memory CD4 T cells are associated with incomplete restoration of the CD4 T cell pool after treatment-induced long-term undetectable HIV viraemia. J. Antimicrob. Chemother., 2013, Vol. 68, No. 11, pp. 2616–2625. URL: http://www.ncbi.nlm.nih.gov/pubmed/23833186.

44. Robbins G.K., Spritzler J.G., Chan E.S., Asmuth D.M., Gandhi R.T., Rodriguez B.A., Skowron G., Skolnik P.R., Shafer R.W., Pollard R.B., Team A.C.T.G. Incomplete reconstitution of T cell subsets on combination antiretroviral therapy in the AIDS Clinical Trials Group protocol 384. Clin. Infect. Dis., 2009, Vol. 48, No. 3, pp. 350–361. URL: http://www.ncbi.nlm.nih.gov/pubmed/19123865.

45. Hua W., Jiao Y., Zhang H., Zhang T., Chen D., Zhang Y., Chen X., Wu H. Central memory CD4 cells are an early indicator of immune reconstitution in HIV/AIDS patients with anti-retroviral treatment. Immunol. Invest., 2012, Vol. 41, No. 1, pp. 1–14. URL: http://www.ncbi.nlm.nih.gov/pubmed/21563924.

46. Letvin N.L., Mascola J.R., Sun Y., Gorgone D.A., Buzby A.P., Xu L., Yang Z.Y., Chakrabarti B., Rao S.S., Schmitz J.E., Montefiori D.C., Barker B.R., Bookstein F.L., Nabel G.J. Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. Science, 2006, Vol. 312, No. 5779, pp. 1530–1533. URL: http://www.ncbi.nlm.nih.gov/pubmed/16763152.

47. Potter S.J., Lacabaratz C., Lambotte O., Perez-Patrigeon S., Vingert B., Sinet M., Colle J.H., Urrutia A., Scott-Algara D., Boufassa F., Delfraissy J.F., Theze J., Venet A., Chakrabarti L.A. Preserved central memory and activated effector memory CD4+ T-cell subsets in human immunodeficiency virus controllers: an ANRS EP36 study. J. Virol., 2007, Vol. 81, No. 24, pp. 13904–13915. URL: http://www.ncbi.nlm.nih.gov/pubmed/17928341.

48. Saidakova E.V., Shmagel K.V., Korolevskaya L.B., Shmage N.G., Chereshnev V.A. Lymphopenia-induced proliferation of CD4 T-cells is associated with CD4 T-lymphocyte exhaustion in treated HIV-infected patients. Indian J. Med. Res., 2018, Vol. 147, No. 4, pp. 376–383. URL: https://www.ncbi.nlm.nih.gov/pubmed/29998873.

49. Autran B., Carcelaint G., Li T.S., Gorochov G., Blanc C., Renaud M., Durali M., Mathez D., Calvez V., Leibowitch J., Katlama C., Debre P. Restoration of the immune system with anti-retroviral therapy. Immunol. Lett., 1999, Vol. 66, No. 1–3, pp. 207–211. URL: ISI>://WOS:000079258500031.

50. Piketty C., Castiel P., Belec L., Batisse D., Si Mohamed A., Gilquin J., Gonzalez-Canali G., Jayle D., Karmochkine M., Weiss L., Aboulker J.P., Kazatchkine M.D. Discrepant responses to triple combination antiretroviral therapy in advanced HIV disease. AIDS, 1998, Vol. 12, No. 7, pp. 745–750. URL: http://www.ncbi.nlm.nih.gov/pubmed/9619806.

51. Gaardbo J.C., Hartling H.J., Gerstoft J., Nielsen S.D. Incomplete immune recovery in HIV infection: mechanisms, relevance for clinical care, and possible solutions. Clin. Dev. Immunol., 2012, Vol. 2012, pp. 670 957. URL: http://www.ncbi.nlm.nih.gov/pubmed/22474480.

52. Massanella M., Negredo E., Clotet B., Blanco J. Immunodiscordant responses to HAART — mechanisms and consequences. Expert Rev. Clin. Immunol., 2013, Vol. 9, No. 11, pp. 1135–1149. URL: http://www.ncbi.nlm.nih.gov/pubmed/24168417.

53. Autran B., Carcelain G., Li T.S., Blanc C., Mathez D., Tubiana R., Katlama C., Debre P., Leibowitch J. Positive effects of combined antiretroviral therapy on CD4(+) T cell homeostasis and function in advanced HIV disease. Science, 1997, Vol. 277, No. 5322, pp. 112–116. URL: ISI>://WOS:A1997XJ41800052.

54. Tuboi S.H., Pacheco A.G., Harrison L.H., Stone R.A., May M., Brinkhof M.W., Dabis F., Egger M., Nash D., Bangsberg D., Braitstein P., Yiannoutsos C.T., Wood R., Sprinz E., Schechter M., IeDEA A.o. Mortality associated with discordant responses to antiretroviral therapy in resource-constrained settings. JAIDS, 2010, Vol. 53, No. 1, pp. 70–77. URL: https://www.ncbi.nlm.nih.gov/pubmed/20035163.

55. Tan R., Westfall A.O., Willig J.H., Mugavero M.J., Saag M.S., Kaslow R.A., Kempf M.C. Clinical outcome of HIV-infected antiretroviral-I patients with discordant immunologic and virologic responses to highly active antiretroviral therapy. JAIDS, 2008, Vol. 47, No. 5, pp. 553–558. URL: http://www.ncbi.nlm.nih.gov/pubmed/18285713.

56. Batista G., Buve A., Ngom Gueye N.F., Manga N.M., Diop M.N., Ndiaye K., Thiam A., Ly F., Diallo A., Ndour C.T., Seydi M. Initial suboptimal CD4 reconstitution with antiretroviral therapy despite full viral suppression in a cohort of HIV-infected patients in Senegal. Med. Mal. Infect., 2015, Vol. 45, No. 6, pp. 199–206. URL: https://www.ncbi.nlm.nih.gov/pubmed/25907261.

57. Baker J.V., Peng G., Rapkin J., Krason D., Reilly C., Cavert W.P., Abrams D.I., MacArthur R.D., Henry K., Neaton J.D., Terry Beirn Community Programs for Clinical Research on A. Poor initial CD4+ recovery with antiretroviral therapy prolongs immune depletion and increases risk for AIDS and non-AIDS diseases. JAIDS, 2008, Vol. 48, No. 5, pp. 541–546. URL: https://www.ncbi.nlm.nih.gov/pubmed/18645520.

58. Grabar S., Le Moing V., Goujard C., Leport C., Kazatchkine M.D., Costagliola D., Weiss L. Clinical outcome of patients with HIV-1 infection according to immunologic and virologic response after 6 months of highly active antiretroviral therapy. Ann. Intern. Med., 2000, Vol. 133, No. 6, pp. 401–410. URL: http://www.ncbi.nlm.nih.gov/pubmed/10975957.

59. Gutierrez F., Padilla S., Masia M., Iribarren J.A., Moreno S., Viciana P., Hernandez-Quero J., Aleman R., Vidal F., Salavert M., Blanco J.R., Leal M., Dronda F., Perez Hoyos S., del Amo J., Co R.M. Patients’ characteristics and clinical implications of suboptimal CD4 T-cell gains after 1 year of successful antiretroviral therapy. Curr. HIV Res., 2008, Vol. 6, No. 2, pp. 100–107. URL: https://www.ncbi.nlm.nih.gov/pubmed/18336257.

60. Gilson R.J., Man S.L., Copas A., Rider A., Forsyth S., Hill T., Bansi L., Porter K., Gazzard B., Orkin C., Pillay D., Schwenk A., Johnson M., Easterbook P., Walsh J., Fisher M., Leen C., Anderson J., Sabin C.A., Group U.K.C.H.C.S. Discordant responses on starting highly active antiretroviral therapy: suboptimal CD4 increases despite early viral suppression in the UK Collaborative HIV Cohort (UK CHIC) Study. Hiv Med., 2010, Vol. 11, No. 2, pp. 152–160. URL: https://www.ncbi.nlm.nih.gov/pubmed/19732175.

61. Dronda F., Moreno S., Moreno A., Casado J.L., Perez-Elias M.J., Antela A. Long-term outcomes among antiretroviral-I human immunodeficiency virus-infected patients with small increases in CD4+ cell counts after successful virologic suppression. Clin. Infect. Dis., 2002, Vol. 35, No. 8, pp. 1005–1009. URL: https://www.ncbi.nlm.nih.gov/pubmed/12355389.

62. Nakanjako D., Kiragga A., Ibrahim F., Castelnuovo B., Kamya M.R., Easterbrook P.J. Sub-optimal CD4 reconstitution despite viral suppression in an urban cohort on antiretroviral therapy (ART) in sub-Saharan Africa: frequency and clinical significance. AIDS Res. Ther., 2008, Vol. 5, pp. 23. URL: https://www.ncbi.nlm.nih.gov/pubmed/18957083.

63. Takuva S., Maskew M., Brennan A.T., Long L., Sanne I., Fox M.P. Poor CD4 recovery and risk of subsequent progression to AIDS or death despite viral suppression in a South African cohort. J. Int. AIDS Soc., 2014, Vol. 17, pp. 18 651. URL: https://www.ncbi.nlm.nih.gov/pubmed/24594114.

64. Zoufaly A., an der Heiden M., Kollan C., Bogner J.R., Fatkenheuer G., Wasmuth J.C., Stoll M., Hamouda O., van Lunzen J., ClinSurv Study G. Clinical outcome of HIV-infected patients with discordant virological and immunological response to antiretroviral therapy. J. Infect. Dis., 2011, Vol. 203, No. 3, pp. 364–371. URL: https://www.ncbi.nlm.nih.gov/pubmed/21208929.

65. Loutfy M.R., Genebat M., Moore D., Raboud J., Chan K., Antoniou T., Milan D., Shen A., Klein M.B., Cooper C., Machouf N., Rourke S.B., Rachlis A., Tsoukas C., Montaner J.S., Walmsley S.L., Smieja M., Bayoumi A., Mills E., Hogg R.S., Collaboration C. A CD4+ cell count <200 cells per cubic millimeter at 2 years after initiation of combination antiretroviral therapy is associated with increased mortality in HIV-infected individuals with viral suppression. JAIDS, 2010, Vol. 55, No. 4, pp. 451–459. URL: https://www.ncbi.nlm.nih.gov/pubmed/21105259.

66. Falster K., Petoumenos K., Chuah J., Mijch A., Mulhall B., Kelly M., Cooper D.A., Australian H.I.V.O.D. Poor baseline immune function predicts an incomplete immune response to combination antiretroviral treatment despite sustained viral suppression. JAIDS, 2009, Vol. 50, No. 3, pp. 307–313. URL: https://www.ncbi.nlm.nih.gov/pubmed/19194311.

67. Engsig F.N., Gerstoft J., Kronborg G., Larsen C.S., Pedersen G., Roge B., Jensen J., Nielsen L.N., Obel N. Long-term mortality in HIV patients virally suppressed for more than three years with incomplete CD4 recovery: a cohort study. BMC Infect. Dis., 2010, Vol. 10, pp. 318. URL: http://www.ncbi.nlm.nih.gov/pubmed/21044307.

68. Kaufmann G.R., Furrer H., Ledergerber B., Perrin L., Opravil M., Vernazza P., Cavassini M., Bernasconi E., Rickenbach M., Hirschel B., Battegay M., Swiss H.I.V.C.S. Characteristics, determinants, and clinical relevance of CD4 T cell recovery to Clin. Infect. Dis., 2005, Vol. 41, No. 3, pp. 361–372. URL: https://www.ncbi.nlm.nih.gov/pubmed/16007534.

69. De Maria A., Cossarizza A. CD4saurus Rex &HIVelociraptor vs. development of clinically useful immunological markers: a Jurassic tale of frozen evolution. J. Transl. Med., 2011, Vol. 9, pp. 93. URL: https://www.ncbi.nlm.nih.gov/pubmed/21679413.

70. Engsig F.N., Zangerle R., Katsarou O., Dabis F., Reiss P., Gill J., Porter K., Sabin C., Riordan A., Fatkenheuer G., Gutierrez F., Raffi F., Kirk O., Mary-Krause M., Stephan C., de Olalla P.G., Guest J., Samji H., Castagna A., d’Arminio Monforte A., Skaletz-Rorowski A., Ramos J., Lapadula G., Mussini C., Force L., Meyer L., Lampe F., Boufassa F., Bucher H.C., De Wit S., Burkholder G.A., Teira R., Justice A.C., Sterling T.R., H M.C., Gerstoft J., Grarup J., May M., Chene G., Ingle S.M., Sterne J., Obel N., Antiretroviral Therapy Cohort C., the Collaboration of Observational H.I.V.E.R.E.i.E. Long-term mortality in HIV-positive individuals virally suppressed for >3 years with incomplete CD4 recovery. Clin. Infect. Dis., 2014, Vol. 58, No. 9, pp. 1312–1321. URL: https://www.ncbi.nlm.nih.gov/pubmed/24457342.

71. Kelley C.F., Kitchen C.M., Hunt P.W., Rodriguez B., Hecht F.M., Kitahata M., Crane H.M., Willig J., Mugavero M., Saag M., Martin J.N., Deeks S.G. Incomplete peripheral CD4+ cell count restoration in HIV-infected patients receiving long-term antiretroviral treatment. Clin. Infect. Dis., 2009, Vol. 48, No. 6, pp. 787–794. URL: https://www.ncbi.nlm.nih.gov/pubmed/19193107.

72. Kaufmann G.R., Perrin L., Pantaleo G., Opravil M., Furrer H., Telenti A., Hirschel B., Ledergerber B., Vernazza P., Bernasconi E., Rickenbach M., Egger M., Battegay M., Swiss H.I.V.C.S.G. CD4 T-lymphocyte recovery in individuals with advanced HIV-1 infection receiving potent antiretroviral therapy for 4 years: the Swiss HIV Cohort Study. Arch. Intern. Med., 2003, Vol. 163, No. 18, pp. 2187–2195. URL: http://www.ncbi.nlm.nih.gov/pubmed/14557216.

73. Шмагель Н.Г., Шмагель К.В., Черешнев В.А. Клинические аспекты неэффективности высокоактивной антиретровирусной терапии // Инфекционные болезни. 2011. Т. 9, № 1. С. 5–10.

74. Meyaard L., Otto S.A., Jonker R.R., Mijnster M.J., Keet R.P.M., Miedema F. Programmed death of T-cells in HIV-1 infection. Science, 1992, Vol. 257, No. 5067, pp. 217–219. URL: ://WOS:A1992JC58500030.

75. Li Q.S., Duan L.J., Estes J.D., Ma Z.M., Rourke T., Wang Y.C., Reilly C., Carlis J., Miller C.J., Haase A.T. Peak SIV replication in resting memory CD4(+) T cells depletes gut lamina propria CD4(+) T cells. Nature, 2005, Vol. 434, No. 7037, pp. 1148–1152. URL: ISI>://WOS:000228693300047.

76. Mattapallil J.J., Douek D.C., Hill B., Nishimura Y., Martin M., Roederer M. Massive infection and loss of memory CD4(+) T cells in multiple tissues during acute SIV infection. Nature, 2005, Vol. 434, No. 7037, pp. 1093–1097. URL: ://WOS:000228693300033.

77. Picker L.J., Hagen S.I., Lum R., Reed-Inderbitzin E.F., Daly L.M., Sylwester A.W., Walker J.M., Siess D.C., Piatak M., Wang C.X., Allison D.B., Maino V.C., Lifson J.D., Kodama T., Axthelm M.K. Insufficient production and tissue delivery of CD4(+) memory T cells in rapidly progressive simian immunodeficiency virus infection. J. Exp. Med., 2004, Vol. 200, No. 10, pp. 1299–1314. URL: ISI>://WOS:000225404300008.

78. Mosier D.E., Gulizia R.J., Macisaac P.D., Torbett B.E., Levy J.A. Rapid loss of CD4+ T-cells in human-PBL-SCID mice by noncytopathic HIV isolates. Science, 1993, Vol. 260, No. 5108, pp. 689–692. URL: ://WOS:A1993KZ64100037.

79. Finkel T.H., Tudorwilliams G., Banda N.K., Cotton M.F., Curiel T., Monks C., Baba T.W., Ruprecht R.M., Kupfer A. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV-infected and SIV-infected lymph nodes. Nat. Med., 1995, Vol. 1, No. 2, pp. 129–134. URL: ://WOS:A1995QX55800022.

80. Giorgi J.V., Hultin L.E., McKeating J.A., Johnson T.D., Owens B., Jacobson L.P., Shih R., Lewis J., Wiley D.J., Phair J.P., Wolinsky S.M., Detels R. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J. Infect. Dis., 1999, Vol. 179, No. 4, pp. 859–870. URL: ISI>://WOS:000079503800013.

81. Zangerle R., Steinhuber S., Sarcletti M., Dierich M.P., Wachter H., Fuchs D., Most J. Serum HIV-1 RNA levels compared to soluble markers of immune activation to predict disease progression in HIV-1-infected individuals. Int. Arch. Allergy Imm., 1998, Vol. 116, No. 3, pp. 228–239. URL: ://WOS:000074827700008.

82. Deeks S.G., Kitchen C.M., Liu L., Guo H., Gascon R., Narvaez A.B., Hunt P., Martin J.N., Kahn J.O., Levy J., McGrath M.S., Hecht F.M. Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood, 2004, Vol. 104, No. 4, pp. 942–947. URL: http://www.ncbi.nlm.nih.gov/pubmed/15117761.

83. Hazenberg M.D., Otto S.A., van Benthem B.H., Roos M.T., Coutinho R.A., Lange J.M., Hamann D., Prins M., Miedema F. Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS, 2003, Vol. 17, No. 13, pp. 1881–1888. URL: http://www.ncbi.nlm.nih.gov/pubmed/12960820.

84. Liu Z., Cumberland W.G., Hultin L.E., Kaplan A.H., Detels R., Giorgi J.V. CD8(+) T-lymphocyte activation in HIV-1 disease reflects an aspect of pathogenesis distinct from viral burden and immunodeficiency. J. Acq. Immun. Def. Syndr., 1998, Vol. 18, No. 4, pp. 332–340. URL: ISI>://WOS:000075124600004.

85. Lackner A.A., Lederman M.M., Rodriguez B. HIV pathogenesis: the host. Cold Spring Harb Perspect Med., 2012, Vol. 2, pp. a007005. URL: http://www.ncbi.nlm.nih.gov/pubmed/22951442.

86. Paiardini M., Muller-Trutwin M. HIV-associated chronic immune activation. Immunol. Rev., 2013, Vol. 254, pp. 78–101. URL: ISI>://WOS:000320390900006.

87. Budd R.C. Activation-induced cell death. Curr. Opin. Immunol., 2001, Vol. 13, No. 3, pp. 356–362. URL: http://www.ncbi.nlm.nih.gov/pubmed/11406369.

88. Green D.R., Droin N., Pinkoski M. Activation-induced cell death in T cells. Immunol. Rev., 2003, Vol. 193, pp. 70–81. URL: http://www.ncbi.nlm.nih.gov/pubmed/12752672.

89. Brenner D., Krammer P.H., Arnold R. Concepts of activated T cell death. Crit. Rev. Oncol. Hematol., 2008, Vol. 66, No. 1, pp. 52–64. URL: http://www.ncbi.nlm.nih.gov/pubmed/18289867.

90. Funderburg N., Luciano A.A., Jiang W., Rodriguez B., Sieg S.F., Lederman M.M. Toll-like receptor ligands induce human T cell activation and death, a model for HIV pathogenesis. PLoS One, 2008, Vol. 3, pp. e1915. URL: http://www.ncbi.nlm.nih.gov/pubmed/18382686.

91. Benito J.M., Lopez M., Lozano S., Ballesteros C., Martinez P., Gonzalez-Lahoz J., Soriano V. Differential upregulation of CD38 on different T-cell subsets may influence the ability to reconstitute CD4+ T cells under successful highly active antiretroviral therapy. J. Acquir. Immune Defic. Syndr., 2005, Vol. 38, No. 4, pp. 373–381. URL: http://www.ncbi.nlm.nih.gov/pubmed/15764953.

92. Lederman M.M., Calabrese L., Funderburg N.T., Clagett B., Medvik K., Bonilla H., Gripshover B., Salata R.A., Taege A., Lisgaris M., McComsey G.A., Kirchner E., Baum J., Shive C., Asaad R., Kalayjian R.C., Sieg S.F., Rodriguez B. Immunologic failure despite suppressive antiretroviral therapy is related to activation and turnover of memory CD4 cells. J. Infect. Dis., 2011, Vol. 204, No. 8, pp. 1217–1226. URL: http://www.ncbi.nlm.nih.gov/pubmed/21917895.

93. Hunt P.W., Brenchley J., Sinclair E., McCune J.M., Roland M., Page-Shafer K., Hsue P., Emu B., Krone M., Lampiris H., Douek D., Martin J.N., Deeks S.G. Relationship between T cell activation and CD4(+) T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. J. Infect. Dis., 2008, Vol. 197, No. 1, pp. 126–133. URL: ://WOS:000252399000020.

94. Hunt P.W., Martin J.N., Sinclair E., Bredt B., Hagos E., Lampiris H., Deeks S.G. T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy. J. Infect. Dis., 2003, Vol. 187, No. 10, pp. 1534–1543. URL: http://www.ncbi.nlm.nih.gov/pubmed/12721933.

95. Marchetti G., Gori A., Casabianca A., Magnani M., Franzetti F., Clerici M., Perno C.F., Monforte A., Galli M., Meroni L. Comparative analysis of T-cell turnover and homeostatic parameters in HIV-infected patients with discordant immune-virological responses to HAART. AIDS, 2006, Vol. 20, No. 13, pp. 1727–1736. URL: http://www.ncbi.nlm.nih.gov/pubmed/16931937.

96. Massanella M., Negredo E., Perez-Alvarez N., Puig J., Ruiz-Hernandez R., Bofill M., Clotet B., Blanco J. CD4 T-cell hyperactivation and susceptibility to cell death determine poor CD4 T-cell recovery during suppressive HAART. AIDS, 2010, Vol. 24, No. 7, pp. 959–968. URL: http://www.ncbi.nlm.nih.gov/pubmed/20177358.

97. Massanella M., Curriu M., Carrillo J., Gomez E., Puig J., Navarro J., Dalmau J., Martinez-Picado J., Crespo M., Cabrera C., Negredo E., Clotet B., Blanco J. Assessing main death pathways in T lymphocytes from HIV infected individuals. Cytometry A., 2013, Vol. 83, No. 7, pp. 648–658. URL: http://www.ncbi.nlm.nih.gov/pubmed/23650261.

98. Benveniste O., Flahault A., Rollot F., Elbim C., Estaquier J., Pedron B., Duval X., Dereuddre-Bosquet N., Clayette P., Sterkers G., Simon A., Ameisen J.C., Leport C. Mechanisms involved in the low-level regeneration of CD4+ cells in HIV-1-infected patients receiving highly active antiretroviral therapy who have prolonged undetectable plasma viral loads. J. Infect. Dis., 2005, Vol. 191, No. 10, pp. 1670–1679. URL: http://www.ncbi.nlm.nih.gov/pubmed/15838794.

99. Negredo E., Massanella M., Puig J., Perez-Alvarez N., Gallego-Escuredo J.M., Villarroya J., Villarroya F., Molto J., Santos J.R., Clotet B., Blanco J. Nadir CD4 T cell count as predictor and high CD4 T cell intrinsic apoptosis as final mechanism of poor CD4 T cell recovery in virologically suppressed HIV-infected patients: clinical implications. Clin. Infect. Dis., 2010, Vol. 50, No. 9, pp. 1300–1308. URL: http://www.ncbi.nlm.nih.gov/pubmed/20367229.

100. Erikstrup C., Kronborg G., Lohse N., Ostrowski S.R., Gerstoft J., Ullum H. T-cell dysfunction in HIV-1-infected patients with impaired recovery of CD4 cells despite suppression of viral replication. J. Acquir. Immune Defic. Syndr., 2010, Vol. 53, No. 3, pp. 303–310. URL: http://www.ncbi.nlm.nih.gov/pubmed/20048679.

101. Mendez-Lagares G., Garcia-Perganeda A., del Mar del Pozo-Balado M., Genebat M., Ruiz-Mateos E., Garcia Garcia M., Munoz-Fernandez M.A., Pacheco Y.M., Leal M. Differential alterations of the CD4 and CD8 T cell subsets in HIV-infected patients on highly active antiretroviral therapy with low CD4 T cell restoration. J. Antimicrob. Chemother., 2012, Vol. 67, No. 5, pp. 1228–1237. URL: http://www.ncbi.nlm.nih.gov/pubmed/22287235.

102. Grabmeier-Pfistershammer K., Steinberger P., Rieger A., Leitner J., Kohrgruber N. Identification of PD-1 as a unique marker for failing immune reconstitution in HIV-1-infected patients on treatment. J. Acquir. Immune Defic. Syndr., 2011, Vol. 56, No. 2, pp. 118–124. URL: http://www.ncbi.nlm.nih.gov/pubmed/20980914.

103. Nakanjako D., Ssewanyana I., Mayanja-Kizza H., Kiragga A., Colebunders R., Manabe Y.C., Nabatanzi R., Kamya M.R., Cao H. High T-cell immune activation and immune exhaustion among individuals with suboptimal CD4 recovery after 4 years of antiretroviral therapy in an African cohort. BMC Infect. Dis., 2011, Vol. 11, pp. 43. URL: http://www.ncbi.nlm.nih.gov/pubmed/21299909.

104. Wherry E.J., Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol., 2015, Vol. 15, No. 8, pp. 486–499.

105. URL: http://www.ncbi.nlm.nih.gov/pubmed/26205583.

106. Barber D.L., Wherry E.J., Masopust D., Zhu B., Allison J.P., Sharpe A.H., Freeman G.J., Ahmed R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006, Vol. 439, No. 7077, pp. 682–687. URL: http://www.ncbi.nlm.nih.gov/pubmed/16382236.

107. Florence E., Lundgren J., Dreezen C., Fisher M., Kirk O., Blaxhult A., Panos G., Katlama C., Vella S., Phillips A., Euro S.S.G. Factors associated with a reduced CD4 lymphocyte count response to HAART despite full viral suppression in the EuroSIDA study. HIV Med., 2003, Vol. 4, No. 3, pp. 255–262. URL: http://www.ncbi.nlm.nih.gov/pubmed/12859325.

108. Isgro A., Leti W., De Santis W., Marziali M., Esposito A., Fimiani C., Luzi G., Pinti M., Cossarizza A., Aiuti F., Mezzaroma I. Altered clonogenic capability and stromal cell function characterize bone marrow of HIV-infected subjects with low CD4+ T cell counts despite viral suppression during HAART. Clin. Infect. Dis., 2008, Vol. 46, No. 12, pp. 1902–1910. URL: http://www.ncbi.nlm.nih.gov/pubmed/18462177.

109. Tanaskovic S., Fernandez S., French M.A., Price R.I., Song S., Robins P.D., Price P. Thymic tissue is not evident on high-resolution computed tomography and [(1)(8)F]fluoro-deoxy-glucose positron emission tomography scans of aviraemic HIV patients with poor recovery of CD4(+) T cells. AIDS, 2011, Vol. 25, No. 9, pp. 1235–1237. URL: http://www.ncbi.nlm.nih.gov/pubmed/21505302.

110. Teixeira L., Valdez H., McCune J.M., Koup R.A., Badley A.D., Hellerstein M.K., Napolitano L.A., Douek D.C., Mbisa G., Deeks S., Harris J.M., Barbour J.D., Gross B.H., Francis I.R., Halvorsen R., Asaad R., Lederman M.M. Poor CD4 T cell restoration after suppression of HIV-1 replication may reflect lower thymic function. AIDS, 2001, Vol. 15, No. 14, pp. 1749–1756. URL: http://www.ncbi.nlm.nih.gov/pubmed/11579235.

111. Li T., Wu N., Dai Y., Qiu Z., Han Y., Xie J., Zhu T., Li Y. Reduced thymic output is a major mechanism of immune reconstitution failure in HIV-infected patients after long-term antiretroviral therapy. Clin. Infect. Dis., 2011, Vol. 53, No. 9, pp. 944–951. URL: http://www.ncbi.nlm.nih.gov/pub -med/21960716.

112. Marziali M., De Santis W., Carello R., Leti W., Esposito A., Isgro A., Fimiani C., Sirianni M.C., Mezzaroma I., Aiuti F. T-cell homeostasis alteration in HIV-1 infected subjects with low CD4 T-cell count despite undetectable virus load during HAART. AIDS, 2006, Vol. 20, No. 16, pp. 2033–2041. URL: http://www.ncbi.nlm.nih.gov/pubmed/17053349.

113. Colle J.H., Moreau J.L., Fontanet A., Lambotte O., Joussemet M., Jacod S., Delfraissy J.F., Theze J. Regulatory dysfunction of the interleukin-7 receptor in CD4 and CD8 lymphocytes from HIV-infected patients — effects of antiretroviral therapy. J. Acquir. Immune Defic. Syndr., 2006, Vol. 42, No. 3, pp. 277–285. URL: http://www.ncbi.nlm.nih.gov/pubmed/16810123.

114. Bellistri G.M., Casabianca A., Merlini E., Orlandi C., Ferrario G., Meroni L., Galli M., Magnani M., Monforte A., Marchetti G. Increased bone marrow interleukin-7 (IL-7)/IL-7R levels but reduced IL-7 responsiveness in HIV-positive patients lacking CD4+ gain on antiviral therapy. PLoS One, 2010, Vol. 5, pp. e15663. URL: http://www.ncbi.nlm.nih.gov/pubmed/21209878.

115. Hodge J.N., Srinivasula S., Hu Z., Read S.W., Porter B.O., Kim I., Mican J.M., Paik C., Degrange P., Di Mascio M., Sereti I. Decreases in IL-7 levels during antiretroviral treatment of HIV infection suggest a primary mechanism of receptor-mediated clearance. Blood, 2011, Vol. 118, No. 12, pp. 3244–3253. URL: http://www.ncbi.nlm.nih.gov/pubmed/21778338.

116. Schacker T.W., Brenchley J.M., Beilman G.J., Reilly C., Pambuccian S.E., Taylor J., Skarda D., Larson M., Douek D.C., Haase A.T. Lymphatic tissue fibrosis is associated with reduced numbers of I CD4(+) T cells in human immunodeficiency virus type 1 infection. Clin. Vaccine Immunol., 2006, Vol. 13, No. 5, pp. 556–560. URL: ://WOS:000237506500005.

117. Schacker T.W., Nguyen P.L., Beilman G.J., Wolinsky S., Larson M., Reilly C., Haase A.T. Collagen deposition in HIV-1 infected lymphatic tissues and T cell homeostasis. J. Clin. Invest., 2002, Vol. 110, No. 8, pp. 1133–1139. URL: ://WOS:000178793700012.

118. Zeng M., Smith A.J., Wietgrefe S.W., Southern P.J., Schacker T.W., Reilly C.S., Estes J.D., Burton G.F., Silvestri G., Lifson J.D., Carlis J.V., Haase A.T. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J. Clin. Invest., 2011, Vol. 121, No. 3, pp. 998–1008. URL: ://WOS:000287991000020.

119. Capitini C.M., Chisti A.A., Mackall C.L. Modulating T-cell homeostasis with IL-7: preclinical and clinical studies. J. Intern. Med., 2009, Vol. 266,

120. No. 2, pp. 141–153. URL: ://WOS:000267883100001.

121. D’Amico R., Yang Y., Mildvan D., Evans S.R., Schnizlein-Bick C.T., Hafner R., Webb N., Basar M., Zackin R., Jacobson M.A. Lower CD4+ T lymphocyte nadirs may indicate limited immune reconstitution in HIV-1 infected individuals on potent antiretroviral therapy: analysis of immunophenotypic marker results of AACTG 5067. J. Clin. Immunol., 2005, Vol. 25, No. 2, pp. 106–115. URL: http://www.ncbi.nlm.nih.gov/pubmed/15821887.

122. Moore R.D., Keruly J.C. CD4+ cell count 6 years after commencement of highly active antiretroviral therapy in persons with sustained virologic suppression. Clin. Infect. Dis., 2007, Vol. 44, No. 3, pp. 441–446. URL: http://www.ncbi.nlm.nih.gov/pubmed/17205456.

123. Gandhi R.T., Spritzler J., Chan E., Asmuth D.M., Rodriguez B., Merigan T.C., Hirsch M.S., Shafer R.W., Robbins G.K., Pollard R.B., Team A. Effect of baseline- and treatment-related factors on immunologic recovery after initiation of antiretroviral therapy in HIV-1-positive subjects: results from ACTG 384. J. Acquir. Immune Defic. Syndr., 2006, Vol. 42, No. 4, pp. 426–434. URL: http://www.ncbi.nlm.nih.gov/pub -med/16810109.

124. Marcus J.L., Leyden W.A., Chao C.R., Xu L., Quesenberry C.P., Jr., Tien P.C., Klein D.B., Towner W.J., Horberg M.A., Silverberg M.J. Differences in response to antiretroviral therapy by sex and hepatitis C infection status. AIDS Patient Care STDS, 2015, Vol. 29, No. 7, pp. 370– 378. URL: http://www.ncbi.nlm.nih.gov/pubmed/26061798.

125. Greub G., Ledergerber B., Battegay M., Grob P., Perrin L., Furrer H., Burgisser P., Erb P., Boggian K., Piffaretti J.C., Hirschel B., Janin P., Francioli P., Flepp M., Telenti A. Clinical progression, survival, and immune recovery during antiretroviral therapy in patients with HIV-1 and hepatitis C virus coinfection: the Swiss HIV Cohort Study. Lancet, 2000, Vol. 356, No. 9244, pp. 1800–1805. URL: http://www.ncbi.nlm.nih.gov/pubmed/11117912.

126. Potter M., Odueyungbo A., Yang H., Saeed S., Klein M.B., Canadian Co-infection Cohort Study I. Impact of hepatitis C viral replication on CD4+ T-lymphocyte progression in HIV-HCV coinfection before and after antiretroviral therapy. AIDS, 2010, Vol. 24, No. 12, pp. 1857–1865. URL: http://www.ncbi.nlm.nih.gov/pubmed/20479633.

127. Hogg R., Lima V., Sterne J., Grabar S., Battegay M., Bonarek M., Monforte A., Esteve A., Gill M., Harris R., Justice A. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet, 2008, Vol. 372, No. 9635, pp. 293–299. URL: http://www.ncbi.nlm.nih.gov/pubmed/18657708.

128. Piketty C., Weiss L., Thomas F., Mohamed A.S., Belec L., Kazatchkine M.D. Long-term clinical outcome of human immunodeficiency virusinfected patients with discordant immunologic and virologic responses to a protease inhibitor-containing regimen. J. Infect. Dis., 2001, Vol. 183, No. 9, pp. 1328–1335. URL: http://www.ncbi.nlm.nih.gov/pubmed/11294663.

129. Damtie D., Yismaw G., Woldeyohannes D., Anagaw B. Common opportunistic infections and their CD4 cell correlates among HIV-infected patients attending at antiretroviral therapy clinic of Gondar University Hospital, Northwest Ethiopia. BMC Res. Notes, 2013, Vol. 6, pp. 534. URL: http://www.ncbi.nlm.nih.gov/pubmed/24330921.

130. Severe P., Juste M.A., Ambroise A., Eliacin L., Marchand C., Apollon S., Edwards A., Bang H., Nicotera J., Godfrey C., Gulick R.M., Johnson W.D., Jr., Pape J.W., Fitzgerald D.W. Early versus standard antiretroviral therapy for HIV-infected adults in Haiti. N. Engl. J. Med., 2010, Vol. 363, No. 3, pp. 257–265. URL: http://www.ncbi.nlm.nih.gov/pubmed/20647201.

131. Kaplan R.C., Kingsley L.A., Gange S.J., Benning L., Jacobson L.P., Lazar J., Anastos K., Tien P.C., Sharrett A.R., Hodis H.N. Low CD4+ T-cell count as a major atherosclerosis risk factor in HIV-infected women and men. AIDS, 2008, Vol. 22, No. 13, pp. 1615–1624. URL: http://www.ncbi.nlm.nih.gov/pubmed/18670221.

132. Phillips A.N., Neaton J., Lundgren J.D. The role of HIV in serious diseases other than AIDS. AIDS, 2008, Vol. 22, No. 18, pp. 2409–2418.

133. URL: http://www.ncbi.nlm.nih.gov/pubmed/19005264.

134. Ho J.E., Scherzer R., Hecht F.M., Maka K., Selby V., Martin J.N., Ganz P., Deeks S.G., Hsue P.Y. The association of CD4+ T-cell counts and cardiovascular risk in treated HIV disease. AIDS, 2012, Vol. 26, No. 9, pp. 1115–1120. URL: http://www.ncbi.nlm.nih.gov/pubmed/22382147.

135. van Lelyveld S.F., Gras L., Kesselring A., Zhang S., De Wolf F., Wensing A.M., Hoepelman A.I., study A.n.o.c. Long-term complications in patients with poor immunological recovery despite virological successful HAART in Dutch ATHENA cohort. AIDS, 2012, Vol. 26, No. 4, pp. 465– 474. URL: http://www.ncbi.nlm.nih.gov/pubmed/22112603.

136. Deeks S.G. HIV infection, inflammation, immunosenescence, and aging. Annu. Rev. Med., 2011, Vol. 62, pp. 141–155. URL: ISI>://WOS:000287956900011.


Для цитирования:


Шмагель К.В. ДИСКОРДАНТНЫЙ ОТВЕТ CD4+ T-ЛИМФОЦИТОВ НА АНТИРЕТРОВИРУСНУЮ ТЕРАПИЮ. ВИЧ-инфекция и иммуносупрессии. 2019;11(1):16-30. https://doi.org/10.22328/2077-9828-2019-11-1-16-30

For citation:


Shmagel K.V. DISCORDANT RESPONSE OF CD4+ T LYMPHOCYTES TO ANTIRETROVIRAL THERAPY. HIV Infection and Immunosuppressive Disorders. 2019;11(1):16-30. (In Russ.) https://doi.org/10.22328/2077-9828-2019-11-1-16-30

Просмотров: 71


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2077-9828 (Print)