Preview

HIV Infection and Immunosuppressive Disorders

Advanced search

Immunopathogenesis and perspectives for immunotherapy of coronavirus infection

https://doi.org/10.22328/2077-9828-2020-12-4-7-22

Abstract

Highly pathogenic coronavirus SARS-CoV-2 is the cause of COVID-19 in humans sometimes with severe clinical manifestations and death. COVID-19 immunopathogenesis is linked with dysregulated immune response with decreased interferon synthesis at the beginning of infection followed by inflammatory cytokines hyperproduction, resulting in an exuberant lung inflammation and respiratory distress syndrome. Perspective immunotherapy directions for COVID-19 could be: intranasal recombinant interferon application in the initial stage of disease, anticytokine therapy at the stage of severe pneumonia and cytokine storm development, passive immunization with blood plasma of recovered patients or therapeutic monoclonal antibodies, prophylactic vaccination.

About the Author

A. S. Simbirtsev
State research institute of highly pure biopreparations
Russian Federation

Andrey S. Simbirtsev

St. Petersburg



References

1. Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G. A new coronavirus associated with human respiratory disease in China // Nature. 2020. Vol. 579 (7798). P. 265–269. doi: 10.1038/s41586-020-2008-3.

2. Chen N., Zhou M., Dong X. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study // Lancet. 2020. Vol. 395 (10223). P. 507–513. doi: 10.1016/S0140-6736(20)30211-7.

3. Huang C., Wang Y., Li X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // Lancet. 2020. Vol. 395 (10223). P. 497–506. doi: 10.1016/S0140-6736(20)30183-5.

4. Xu Z., Shi L., Wang Y. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome // Lancet Respir. Med. 2020. Vol. 8 (4). P. 420–422. doi: 10.1016/S2213-2600(20)30076-X.

5. Ou X., Liu Y., Lei X. et al. Characterization of Spike Glycoprotein of SARS-CoV-2 on Virus Entry and Its Immune Cross-Reactivity With SARSCoV // Nat. Commun. 2020. Vol. 11 (1). P. 1620. doi: 10.1038/s41467-020-15562-9.

6. Zhou P., Yang X., Wang X. A pneumonia outbreak associated with a new coronavirus of probable bat origin // Nature. 2020. Vol. 579 (7798). P. 270–273. doi: 10.1038/s41586-020-2012-7.

7. Ulrich H., Pillat M. CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azithromycin and Stem Cell Engagement // Stem Cell Rev Rep. 2020. Apr. 20. doi: 10.1007/s12015-020-09976-7. Online ahead of print.

8. Wang Q., Zhang Y., Wu L. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2 // Cell. 2020. Vol. 181. P. 1–11. https://doi.org/10.1016/j.cell.2020.03.045

9. Takeuchi O., Akira S. Pattern recognition receptors and inflammation // Cell. 2010. Vol. 140 (6). P. 805–820. doi: 10.1016/j.cell.2010.01.022.

10. Jefferies C. Regulating IRFs in IFN Driven Disease // Front. Immunol. 2019. Vol. 10. P. 325. doi: 10.3389/fimmu.2019.00325.

11. Mitchell S., Mercado E., Adelaja A. An NFkB Activity Calculator to Delineate Signaling Crosstalk: Type I and II Interferons Enhance NFkB via Distinct Mechanisms // Front. Immunol. 2019. Vol. 10. P. 1425. doi: 10.3389/fimmu.2019.01425.

12. Zhu X., Wang Y., Zhang H. Genetic variation of the human alpha-2-Heremans-Schmid glycoprotein (AHSG) gene associated with the risk of SARS-CoV infection // PloS One. 2011. Vol. 6 (8). P. e23730. doi: 10.1371/journal.pone.0023730.

13. Ivashkiv L., Donlin L. Regulation of type I interferon responses // Nature reviews Immunology. 2014. Vol. 14 (1). P. 36–49. doi: 10.1038/nri3581.

14. Pestka S., Krause C., Walter M. Interferons, interferon-like cytokines, and their receptors // Immunol. Rev. 2004. Vol. 202. P. 8–32. doi: 10.1111/j.0105-2896.2004.00204.x.

15. Kotenko S., Gallagher G., Baurin V. IFN lambdas mediate antiviral protection through a distinct class II cytokine receptor complex // Nat. Immunol. 2003. Vol. 4 (1). P. 69–77. doi: 10.1038/ni875.

16. Prejean C., Colamonici O. Role of the cytoplasmic domains of the type I interferon receptor subunits in signaling // Seminars in Cancer Biology. 2000. Vol. 10 (2). P. 83–92. doi: 10.1006/scbi.2000.0311.

17. Schoggins J., Wilson S., Panis M. A diverse range of gene products are effectors of the type I interferon antiviral response // Nature. 2011. Vol. 472 (7344). P. 481–485. doi: 10.1038/nature09907.

18. Ye L., Schnepf D., Staeheli P. Interferon- l orchestrates innate and adaptive mucosal immune responses // Nat. Rev. Immunol. 2019. Vol. 19 (10). P. 614–625. doi: 10.1038/s41577-019-0182-z.

19. Fairman P., Angel J. The effect of human immunodeficiency virus-1 on monocyte-derived dendritic cell maturation and function // Clinical and experimental immunology. 2012. Vol. 170 (1). P. 101–113. doi: 10.1111/j.1365-2249.2012.04628.x.

20. Cardone M., Ikeda K., Varano B., Gessani S., Conti L. HIV-1-induced impairment of dendritic cell cross talk with gammadelta T lymphocytes // Journal of virology. 2015. Vol. 89 (9). P. 4798–4808. doi: 10.1128/JVI.03681-14.

21. Shokri S., Mahmoudvand S., Taherkhani R., Farshadpour F. Modulation of the immune response by Middle East respiratory syndrome coronavirus // J. Cell. Physiol. 2019. Vol. 234 (3). P. 2143–2151. doi: 10.1002/jcp.27155.

22. Schulz K., Mossman K. Viral Evasion Strategies in Type I IFN Signaling — A Summary of Recent Developments // Front. Immunol. 2016. Vol. 7. P. 498. doi: 10.3389/fimmu.2016.00498.

23. Spiegel M., Pichlmair A., Martinez-Sobrido L. et al. Inhibition of Beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3 // Journal of virology. 2005. Vol. 79 (4). P. 2079–2086. doi: 10.1128/JVI.79.4.2079-2086.2005.

24. Kopecky-Bromberg S., Martinez-Sobrido L., Frieman M., Baric R., Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists // Journal of virology. 2007. Vol. 81 (2). P. 548–557. doi: 10.1128/JVI.01782-06.

25. Lu X., Pan J., Tao J., Guo D. SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism // Virus genes. 2011. Vol. 42 (1). P. 37–45. doi: 10.1007/s11262-010-0544-x.

26. Kindler E., Thiel V., Weber F. Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response // Adv. Virus Res. 2016. Vol. 96. P. 219–243. doi: 10.1016/bs.aivir.2016.08.006.

27. de Wit E., van Doremalen N., Falzarano D., Munster V. SARS and MERS: recent insights into emerging coronaviruses // Nat. Rev. Microbiol. 2016. Vol. 14 (8). P. 523–534. doi: 10.1038/nrmicro.2016.81.

28. Kikkert M. Innate Immune Evasion by Human Respiratory RNA Viruses // J. Innate Immun. 2020. Vol. 12 (1). P. 4–20. doi: 10.1159/000503030.

29. Faure E., Poissy J., Goffard A. Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside? // PLoS One. 2014. Vol. 9 (2). e88716. doi: 10.1371/journal.pone.0088716.

30. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology // Semin Immunopathol. 2017. Vol. 39 (5). P. 529–539. doi: 10.1007/s00281-017-0629-x.

31. Lessler J., Reich N., Brookmeyer R. Incubation periods of acute respiratory viral infections: a systematic review // Lancet Infect. Dis. 2009. Vol. 9 (5). P. 291–300. doi: 10.1016/S1473-3099(09)70069-6.

32. Channappanavar R., Fett C., Zhao J., Meyerholz D., Perlman S. Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection // J. Virol. 2014. Vol. 88 (19). P. 11034–11044. doi: 10.1128/JVI.01505-14.

33. Zhao J., Li K., Wohlford-Lenane C. et al. Rapid generation of a mouse model for Middle East respiratory syndrome // Proc. Natl. Acad. Sci. USA. 2014. Vol. 111 (13). P. 4970–4975. doi: 10.1073/pnas.1323279111.

34. Maloir Q., Ghysen K., von Frenckell C., Louis R., Guiot J. [Acute respiratory distress revealing antisynthetase syndrome] // Revue medicale de Liege. 2018. Vol. 73 (7–8). P. 370–375. PMID: 30113776.

35. Yang Y., Xiong Z., Zhang S. Bcl-xL inhibits T-cell apoptosis induced by expression of SARS coronavirus E protein in the absence of growth factors // Biochem. J. 2005. Vol. 392 (Pt 1). P. 135–143. doi: 10.1042/BJ20050698.

36. Mubarak A., Alturaiki W., Hemida M. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Infection, Immunological Response, and Vaccine Development // J. Immunol. Res. 2019. Vol. 2019. P. 6491738. doi: 10.1155/2019/6491738.

37. Chen J., Lau Y., Lamirande E. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection // J. Virol. 2010. Vol. 84 (3). P. 1289–1301. doi: 10.1128/JVI.01281-09.

38. Li C., Wu H., Yan H. T cell responses to whole SARS coronavirus in humans // J. Immunol. 2008. Vol. 181 (8). P. 5490–5500. doi: 10.4049/jimmunol.181.8.5490.

39. Liu W., Fontanet A., Zhang P. Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome // J. Infect. Dis. 2006. Vol. 193 (6). P. 792–795. doi: 10.1086/500469.

40. Niu P., Zhang S., Zhou P. Ultrapotent Human Neutralizing Antibody Repertoires Against Middle East Respiratory Syndrome Coronavirus From a Recovered Patient // J. Infect. Dis. 2018. Vol. 218 (8). P. 1249–1260. doi: 10.1093/infdis/jiy311.

41. Liu W., Zhao M., Liu K. T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV // Antiviral Res. 2017. Vol. 137. P. 82–92. doi: 10.1016/j.antiviral.2016.11.006.

42. Thevarajan I., Nguyen T., Koutsakos M. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19 // Nat. Med. 2020. Vol. 26. P. 453–455. https://doi.org/10.1038/s41591-020-0819-2.

43. Zhao J., Yuan Q., Wang H. Antibody responses to SARS- CoV-2 in patients of novel coronavirus disease 2019 // Clin. Infect. Dis. 2020. Mar. 28. ciaa344. doi: 10.1093/cid/ciaa344. Online ahead of print.

44. Huang K., Su I.-J., Theron M. An interferon-gamma-related cytokine storm in SARS patients // J. Med. Virol. 2005. Vol. 75 (2). P. 185–194. doi: 10.1002/jmv.20255.

45. Qin C., Zhou L., Hu Z. et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China // Clin. Infect. Dis. 2020. Mar. 12. ciaa248. doi: 10.1093/cid/ciaa248.

46. Wong C., Lam C., Wu A. et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome // Clin. Exp. Immunol. 2004. Vol. 136 (1). P. 95–103 doi: 10.1111/j.1365-2249.2004.02415.x.

47. Mahallawi W., Khabour O., Zhang Q., Makhdoum H., Suliman B. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile // Cytokine. 2018. Vol. 104. P. 8–13. doi: 10.1016/j.cyto.2018.01.025.

48. Nicholls J., Poon L., Lee K. Lung pathology of fatal severe acute respiratory syndrome // Lancet. 2003. Vol. 361 (9371). P. 1773–1778. doi: 10.1016/S0140-6736(03)13413-7.

49. Gu J., Gong E., Zhang B. et al. Multiple organ infection and the pathogenesis of SARS // J. Exp. Med. 2005. Vol. 202 (3). P. 415–424. doi: 10.1084/jem.20050828.

50. Li T., Qiu Z., Zhang L. et al. Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome // J. Infect. Dis. 2004. Vol. 189 (4). P. 648–651. doi: 10.1086/381535.

51. Channappanavar R., Fehr A., Vijay R. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice // Cell Host Microbe. 2016. Vol. 19 (2). P. 181–193. doi: 10.1016/j.chom.2016.01.007.

52. Cameron M., Xu L., Danesh A. Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome // J. Virol. 2007. Vol. 81 (16). P. 8692–8706. doi: 10.1128/JVI.00527-07.

53. Smits S., Lang A., van den Brand J. et al. Exacerbated innate host response to SARS-CoV in aged non-human primates // PLoS Pathog. 2010. Vol. 6 (2). e1000756. doi: 10.1371/journal.ppat.1000756.

54. Rockx B., Baas T., Zornetzer G. et al. Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection // J. Virol. 2009. Vol. 83 (14). P. 7062–7074. doi: 10.1128/JVI.00127-09.

55. Wong J., Viswanathan S., Wang M. Current and future developments in the treatment of virus-induced hypercytokinemia // Future Med. Chem. 2017. Vol. 9 (2). P. 169–178. doi: 10.4155/fmc-2016-0181.

56. Teijaro J., Walsh K., Rice S. Mapping the innate cascade essential for cytokine storm during influenza virus infection // Proc. Natl. Acad. Sci. USA. 2014. Vol. 111 (10). P. 3799–3804. doi: 10.1073/pnas.1400593111.

57. Gao R., Bhatnagar J., Blau D. et al. Cytokine and chemokine profiles in lung tissues from fatal cases of 2009 pandemic influenza A (H1N1): role of the host immune response in pathogenesis // Am. J. Pathol. 2013. Vol. 183 (4). P. 1258–1268. doi: 10.1016/j.ajpath.2013.06.023.

58. Thomas M., Mani R., Philip M. Proinflammatory chemokines are major mediators of exuberant immune response associated with influenza A (H1N1) pdm09 virus infection // J. Med. Virol. 2017. Vol. 89 (8). P. 1373–1381. doi: 10.1002/jmv.24781.

59. Betáková T., Kostrabova A., Lachova V., Turianova L. Cytokines induced during influenza virus infection // Curr. Pharm. Des. 2017. Vol. 23 (18). P. 2616–2622. doi: 10.2174/1381612823666170316123736.

60. To K., Hung I., Li I. et al. Delayed clearance of viral load and marked cytokine activation in severe cases of pandemic H1N1 2009 influenza virus infection // Clin. Infect. Dis. 2010. Vol. 50 (6). P. 850–859. doi: 10.1086/650581.

61. Hayden F., Fritz R., Lobo M. Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense // J. Clin. Invest. 1998. Vol. 101 (3). P. 643–649. doi: 10.1172/JCI1355.

62. Yu L., Wang Z., Chen Y. Clinical, virological, and histopathological manifestations of fatal human infections by avian influenza A(H7N9) virus // Clin. Infect. Dis. 2013. Vol. 57 (10). P. 1449–1457. doi: 10.1093/cid/cit541.

63. Bohmwald K., Gálvez N., Canedo-Marroquín G. Contribution of Cytokines to Tissue Damage During Human Respiratory Syncytial Virus Infection // Front Immunol. 2019. Vol. 10. P. 452. doi: 10.3389/fimmu.2019.00452.

64. Zhao J., Yang Y., Huang H. Relationship between the ABO Blood Group and the COVID-19 Susceptibility // MedRxiv 2020.03.11.20031096. doi: 10.1101/2020.03.11.20031096.

65. Liu W., Li H. COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism // Chem. Rxiv. 2020. Preprint. doi: 10.26434/chemrxiv.11938173.v6.

66. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: a systemic review // J. Med. Virol. 2020. Vol. 92 (5). P. 479–490. doi: 10.1002/jmv.25707.

67. De Clercq E., Li G. Approved antiviral drugs over the past 50 years // Clin. Microbiol. Rev. 2016. Vol. 29 (3). P. 695–747. doi: 10.1128/CMR.00102-15.

68. Zumla A., Rao M., Wallis R.S. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects // Lancet. 2016. Vol. 16 (4). e47–63. doi: 10.1016/S1473-3099(16)00078-5.

69. Kaufmann S., Dorhoi A., Hotchkiss R., Bartenschlager R. Host-directed therapies for bacterial and viral infections // Nat. Rev. Drug. Disc. 2018. Vol. 17 (1). P. 35–56. doi: 10.1038/nrd.2017.162.

70. Falzarano D., de Witt E., Rasmussen A. et al. Treatment with interferon-alpha2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques // Nat. Med. 2013. Vol. 19 (10). P. 1313–1317. doi: 10.1038/nm.3362.

71. Deryabin P.G., Zarubaev V.V. Regarding the Coronavirus infection and prospects for prevention and treatment by recombinant human interferon alpha-2b medications. Infectious diseases, 2014, Vol. 12 (30), pp. 32–34 (In Russ.).

72. Tyrrell D. The efficacy and tolerance of intranasal interferons: studies at the Common Cold Unit // J. Antimicrob. Chemother. 1986. Vol. 18, Suppl B. P. 153–156. doi: 10.1093/jac/18.supplement_b.153.

73. Omrani A., Saad M., Baig K. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study // Lancet Infect Dis. 2014. Vol. 14 (11). P. 1090–1095. doi: 10.1016/S1473-3099(14)70920-X.

74. Zumla A., Chan J., Azhar E. Coronaviruses — drug discovery and therapeutic options // Nat. Rev. Drug Discov. 2016. Vol. 15 (5). P. 327–347 doi: 10.1038/nrd.2015.37.

75. Dong L., Hu S., Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19) // Drug Discoveries & Therapeutics. 2020. Vol. 14 (1). P. 58–60. doi: 10.5582/ddt.2020.01012.

76. Mair-Jenkins J., Saavedra-Campos M., Baillie J. et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis // J. Infect. Dis. 2015. Vol. 211 (1). P. 80–90. doi: 10.1093/infdis/jiu396.

77. Shanmugaraj B., Siriwattananon K., Wangkanont K., Phoolcharoen W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19) // Asian. Pac. J. Allergy Immunol. 2020. Vol. 38 (1). P. 10–18. doi: 10.12932/AP-200220-0773.

78. Coughlin M., Prabhakar B. Neutralizing human monoclonal antibodies to Severe acute respiratory syndrome coronavirus: target, mechanism of action and therapeutic potential // Rev. Med. Virol. 2012. Vol. 22 (1). P. 2–17. doi: 10.1002/rmv.706.

79. Niu P., Zhao G., Deng Y. A novel human mAb (MERS-GD27) provides prophylactic and postexposure efficacy in MERS-CoV susceptible mice // Science China Life sciences. 2018. Vol. 61 (10). P. 1280–1282. doi: 10.1007/s11427-018-9343-8.

80. Ying T., Du L., Ju T. Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies // J. Virol. 2014. Vol. 88 (14). P. 7796–7805. doi: 10.1128/JVI.00912-14.

81. Houser K., Gretebeck L., Ying T. et al. Prophylaxis With a Middle East Respiratory Syndrome Coronavirus (MERS-CoV)-Specific Human Monoclonal Antibody Protects Rabbits From MERS-CoV Infection // J. Infect. Dis. 2016. Vol. 213 (10). P. 1557–1561. doi: 10.1093/infdis/jiw080.

82. van Doremalen N., Falzarano D., Ying T. Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERSCoV) in common marmosets // Antiviral Res. 2017. Vol. 143. P. 30–37. doi: 10.1016/j.antiviral.2017.03.025.

83. Ahmed S., Quadeer A., McKay M. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies // Viruses. 2020. Vol. 12 (3). P. 254. doi: 10.3390/v12030254.

84. Prompetchara E., Ketloy C., Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic // Asian Pac. J. Allergy Immunol. 2020. Vol. 38 (1). P. 1–9. doi: 10.12932/AP-200220-0772.

85. Du L., He Y., Zhou Y. et al. The spike protein of SARS-CoV — a target for vaccine and therapeutic development // Nat. Rev. Microbiol. 2009. Vol. 7 (3). Р. 226–236. doi: 10.1038/nrmicro2090.

86. Al-Amri S., Abbas A., Siddiq L. et al. Immunogenicity of Candidate MERS-CoV DNA Vaccines Based on the Spike Protein // Sci Rep. 2017. Vol. 7. P. 44875. doi: 10.1038/srep44875.

87. Ng O., Chia A., Tan A. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection // Vaccine. 2016. Vol. 34 (17). P. 2008–2014. doi: 10.1016/j.vaccine.2016.02.063.


Review

For citations:


Simbirtsev A.S. Immunopathogenesis and perspectives for immunotherapy of coronavirus infection. HIV Infection and Immunosuppressive Disorders. 2020;12(4):7-22. (In Russ.) https://doi.org/10.22328/2077-9828-2020-12-4-7-22

Views: 1368


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2077-9828 (Print)