Preview

HIV Infection and Immunosuppressive Disorders

Advanced search

The herd immunity to SARS-CoV-2 among the population of the Nizhny Novgorod region amid the COVID-19 epidemic

https://doi.org/10.22328/2077-9828-2021-13-3-30-39

Abstract

The aim of the study was to assess the seroprevalence to the SARS-CoV-2 nucleocapsid in the population of the Nizhny Novgorod region against the background of COVID-19.
Materials and methods. The work was carried out according to a unified methodology developed by Rospotrebnadzor with the participation of the St. Pasteur. The selection of volunteers for the study was carried out by the method of questioning and randomization. The exclusion criterion was active COVID-19 infection at the time of the survey. A total of 2829 volunteers were surveyed, divided into seven age groups. Venous blood samples were taken from all volunteers from EDTA vacutainers. In the blood plasma, the content of specific IgG to the SARS-CoV-2 nucleocapsid was determined by the enzyme immunoassay.
Results. The population level of immunity to SARS-CoV-2 among the surveyed volunteers was 8,4% (95% CI 7,4–9,5). The largest proportion of seroprevalent persons was found among children aged 1–6 years — 15,9% (95% CI 8,2–26,7), the smallest in the group of volunteers aged 18–29 years — 6,0% (95% CI 3,8–8,9). During 3-stage serological monitoring, the proportion of seroprevalent volunteers increased to 22,5% (95% CI 20,3–24,9)%, or almost 2 times from the initial level (p<0,05). of the population of the Semenovsky district (22,7% (95% CI 10,9–41,8)), the smallest — in the city of Dzerzhinsk (2,4% (95% CI 0,5–7,1)%) Among convalescents after COVID-19, specific antibodies were detected in 47,2% (95% CI 30,5–69,6), which is 5,6 times higher than the average for the population. Among those who had verified contact with patients, specific IgG were detected in 17,6% (95% CI 12,9–23,5), which is 2,1 times higher than the average for the population. Among asymptomatic persons who had a positive PCR result, 53,3% (95% CI 30,5–86,6) were seropositive, which is 6,3 times higher than the average for the population. Of 225 seropositive people, 188 (88,4% (95% CI 76,6–101,6)) had the disease asymptomatic.
Conclusion. The relatively low proportion of seroprevalent persons among the population may indicate a significant risk of further development of the epidemic process caused by COVID-19 in the territory of the Nizhny Novgorod region.

About the Authors

A. Yu. Popova
Federal Service of Surveillance in the Field of Consumer Right Protection & Human Welfare (Rospotrebnadzor)
Russian Federation

Moscow



E. B. Ezhlova
Federal Service of Surveillance in the Field of Consumer Right Protection & Human Welfare (Rospotrebnadzor)
Russian Federation

Moscow



A. A. Melnikova
Federal Service of Surveillance in the Field of Consumer Right Protection & Human Welfare (Rospotrebnadzor)
Russian Federation

Moscow



V. S. Smirnov
St. Petersburg Pasteur Institute
Russian Federation

Smirnov Vyacheslav Sergeevich 

St. Petersburg 



L. V. Lyalina
St. Petersburg Pasteur Institute
Russian Federation

St. Petersburg



E. I. Efimov
Academician I. N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Russian Federation

Nizhny Novgorod



N. S. Kucherenko
Rospotrebnadzor Department in the Nizhny Novgorod Region
Russian Federation

Nizhny Novgorod



N. N. Zaitseva
Academician I. N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Russian Federation

Nizhny Novgorod



N. A. Sadykova
Rospotrebnadzor Department in the Nizhny Novgorod Region
Russian Federation

Nizhny Novgorod



S. A. Sarskov
Academician I. N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Russian Federation

Nizhny Novgorod



G. A. Chekhova
Center for Hygiene and Epidemiology in the Nizhny Novgorod Region
Russian Federation

Nizhny Novgorod



T. V. Arbuzova
St. Petersburg Pasteur Institute
Russian Federation

St. Petersburg



V. V. Vetrov
St. Petersburg Pasteur Institute
Russian Federation

St. Petersburg



A. A. Totolian
St. Petersburg Pasteur Institute
Russian Federation

St. Petersburg



References

1. Battagello D.S., Dragunas G., Klein M.O., Ayub A.L.P. et al. Unpuzzling COVID-19: tissue-related signaling pathways associated with SARSCoV-2 infection and transmission // Clin. Sci. (Lond.). 2020. Vol. 134, No. 16. Р. 2137–2160. doi: 10.1042/CS20200904.

2. Tay M.Z., Poh C.M., Rénia L., MacAry P.A., Ng L.F.P. The trinity of COVID-19: immunity, inflammation and intervention // Nat. Rev. Immunol. 2020. Vol. 20. Р. 363–374. doi: 10.1038/s41577-020-0311-8.

3. Rahman N., Basharat Z., Yousuf M., Castaldo G. et al. Virtual Screening of Natural Products against Type II Transmembrane Serine Protease (TMPRSS2), the Priming Agent of Coronavirus 2 (SARS-CoV-2) // Molecules. 2020. Vol. 25, No. 10. Р. 2271. doi: 10.3390/molecules25102271.

4. Багненко С.Ф., Беляков Н.А., Рассохин В.В., Трофимова Т.Н. и др. Начало эпидемии COVID-19 / под ред. С.Ф.Багненко, Н.А.Белякова. СПб.: Балтийский медицинский образовательный центр, 2020. 259 с. [Bagnenko S.F., Belyakov N.A., Rassokhin V.V., Trofimova T.N. The beginning of the COVID-19 epidemic. Edited by S.F. Bagnenko, N.A. Belyakov. St. Petersburg: Baltic Medical Education Center, 2020, 259 p. (In Russ.)].

5. Vabret N., Britton G.J., Gruber C., Hegd S. et al. Immunology of COVID-19: current state of the science // Immunity. 2010. Vol. 52, No. 6. Р. 910–994. doi: 10.1016/j.immuni.2020.05.002.

6. Yu K., Wu Y., He J., Liu X. et al. Thymosin a-1 protected T cells from excessive activation in severe COVID-19 // Research Square. 2020. doi: 10.21203/rs.3.rs-25869/v1.

7. Abdullah S.F., Sharquie I.K. SARS-CoV-2: A Piece of Bad News // Medeni Med. J. 2020. Vol. 35, No. 2. Р. 151–160. doi: 10.5222/MMJ.2020.82584.

8. Hou H., Wang T., Zhang B., Luo Y. Detection of IgM and IgG antibodies in patients with coronavirus disease 2019 // Clin. Transl. Immunology. 2020. Vol. 9, No. 5. e01136. doi: 10.1002/cti2.1136.

9. Cao Y., Su B., Guo X., Sun W. Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients’ B Cells // Cell. 2020. Vol. 182, No. 1. Р. 73–84. e16. doi: 10.1016/j.cell.2020.05.025.

10. Clemente-Suárez V.J., Hormeño-Holgado A., Jiménez M., Benitez-Agudelo J.C. Dynamics of Population Immunity Due to the Herd Effect in the COVID-19 Pandemic // Vaccines (Basel). 2020. Vol. 8, No. 2. Р. 236. doi: 10.3390/vaccines8020236.

11. Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Башкетова Н.С. и др. Популяционный иммунитет к SARS-CoV-2 среди населения СанктПетербурга в период эпидемии COVID-19 // Проблемы особо опасных инфекций. 2020. №. 3. С. 124–130. [Popova A.Yu., Ezhlova E.B., Melnikova A.A., Bashketova N.S. and others. Population immunity to SARS-CoV-2 among the population of St. Petersburg during the COVID-19 epidemic. Problems of Highly Dangerous Infections, 2020, No. 3, pp. 124–130 (In Russ.)]. doi: 10.21055/0370-1069-2020-3-124-130.

12. Newcombe R.G. Two-Sided Confidence Intervals for the Single Proportion: Comparison of Seven Methods // Statistics in Medicine. 1998. Vol. 17. Р. 857–887. doi: 10.1002/(sici)1097–0258(19980430)17:8<857::aid-sim777>3.0.co;2-e.

13. Попова А.Ю., Андреева Е.Е., Бабура Е.А., Балахонов С.В. Особенности серопревалентности к нуклеокапсиду SARS-CоV-2 у детей в период эпидемии COVID-19 2020 года // Педиатрия. Журнал им. Г.Н.Сперанского. 2021. Т. 100, № 3. С. 219–225.

14. Randolph H.E., Barreiro L.B. Herd Immunity: Understanding COVID-19 // Immunity. 2020. Vol. 52, No. 5. Р. 737–741. doi: 10.1016/j.immuni.2020.04.012.

15. Singh R., Kang A., Luo X., Jeyanathan M. COVID-19: Current knowledge in clinical features, immunological responses, and vaccine development // FASEB J. 2021. Vol. 35, No. 3. Р. e21409. doi: 10.1096/fj.202002662R

16. Li G., Fan Y., Lai Y., Han T. Coronavirus infections and immune responses // J. Med. Virol. 2020. Vol. 92. Р. 424–432. doi: 10.1002/jmv.25685.

17. Quadeer A.A., Ahmed S.F., McKay M.R. Epitopes targeted by T cells in convalescent COVID-19 patients // bioRxiv. 2020. No. 267724. doi: 10.1101/2020.08.26.267724.

18. Azkur A.K., Akdis M., Azkur D., Sokolowska M. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19 // Allergy. 2020. Vol. 75, No. 7. Р. 1564–1581. doi: 10.1111/all.14364.

19. Minervina A.A., Komech E.A., Titov A., Koraichi M.B. Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T cell memory formation after mild COVID-19 infection // bioRxiv. 2020. No. 100545. doi: 10.1101/2020.05.18.100545.

20. Lee S., Meyler P., Mozel M., Tauh T., Merchant R. Asymptomatic carriage and transmission of SARS-CoV-2: What do we know? // Can. J. Anaesth. 2020. Vol. 67, No. 10. Р. 1424–1430. doi: 10.1007/s12630-020-01729-x.

21. Wu P., Hao X., Lau E.H.Y., Wong J.Y. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020 // Euro Surveill. 2020. Vol. 21, No. 3. Р. 2000044. doi: 10.2807/1560-7917.ES.2020.25.3.2000044.

22. Смирнов В.С., Зарубаев В.В., Петленко С.В. Биология возбудителей и контроль гриппа и ОРВИ. СПб.: Гиппократ, 2020. 296 c. [Smirnov V.S., Zarubaev V.V., Petlenko S.V. Biology of pathogens and control of influenza and ARVI. St. Petersburg: Publishing house Hippocrates, 2020, 296 p. (In Russ.)].

23. Rao V., Thakur S., Rao J., Arakeri G. Mesenchymal stem cells-bridge catalyst between innate and adaptive immunity in COVID 19 // Med. Hypotheses. 2020. Vol. 143. Р. 109845. doi: 10.1016/j.mehy.2020.109845.

24. Meng Q.-S., Liu J., Wei L., Fan H.-M. Senescent mesenchymal stem/stromal cells and restoring their cellular functions // World J. Stem Cells. 2020. Vol. 12, No. 9. Р. 966–985. doi: 10.4252/wjsc.v12.i9.966.

25. Long Q.-X., Tang X.-J., Shi Q.-L., Li Q. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections // Nat. Med. 2020. Vol. 26. Р. 1200–1204. doi: 10.1038/s41591-020-0965-6.

26. Ng K., Faulkner N., Cornish G., Rosa A. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans // bioRxiv. 2020. No. 095414. doi: 10.1101/2020.05.14.095414.

27. Беляков Н.А., Багненко С.Ф., Рассохин В.В., Трофимова Т.Н. Эволюция пандемии COVID-19. СПб.: Балтийский медицинский образовательный центр, 2021. 409 с. [Belyakov N.A., Bagnenko S.F., Rassokhin V.V., Trofimova T.N. et al. Evolution of the COVID-19 pandemic. St. Petersburg: Baltic Medical Education Center, 2021, 409 p. (In Russ.)].


Review

For citations:


Popova A.Yu., Ezhlova E.B., Melnikova A.A., Smirnov V.S., Lyalina L.V., Efimov E.I., Kucherenko N.S., Zaitseva N.N., Sadykova N.A., Sarskov S.A., Chekhova G.A., Arbuzova T.V., Vetrov V.V., Totolian A.A. The herd immunity to SARS-CoV-2 among the population of the Nizhny Novgorod region amid the COVID-19 epidemic. HIV Infection and Immunosuppressive Disorders. 2021;13(3):30-39. (In Russ.) https://doi.org/10.22328/2077-9828-2021-13-3-30-39

Views: 651


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2077-9828 (Print)