Preview

HIV Infection and Immunosuppressive Disorders

Advanced search

Duration of SARS-CоV-2 virus shedding in COVID-19 patients with HIV infection

https://doi.org/10.22328/2077-9828-2024-16-4-99-106

Abstract

The aim: to describe the duration of SARS-CoV-2 virus shedding in patients with HIV infection and to identify factors associated with prolonged viral shedding.

Materials and methods: in a prospective study, the clinical and laboratory characteristics of COVID-19 and HIV infection and the duration of SARS-CoV-2 virus shedding were compared in 170 patients, titers of virus neutralizing antibodies to SARSCoV-2 were identified in 68 patients; pathogen genotyping was performed in 36 patients. Statistical analysis was carried out using the IBM SPSS Statistics package.

Results and discussion: there were no significant differences in the duration of SARS-CoV-2 virus shedding in patients with varying severity grade of COVID-19; a negative relationship between the titer of virus neutralizing antibodies to SARS-CoV-2 and viral shedding duration was revealed. In 35.9% of patients (61 persons), the persistence of the virus lasted for more than 21 days, this group was characterized by an unfavorable course of HIV infection in the absence of ART, significantly lower CD4 cell values and a higher HIV viral load in the blood. Virus shedding was shown to be significantly longer in patients with B.1.1 strain versus other SARS-CoV-2 gene variants. Mutations in the Spike protein gene that increase the infectious ability of the pathogen and reduce its sensitivity to neutralizing antibodies were found in 4 patients.

Conclusion: the severity of COVID-19 did not affect the duration of SARS-CoV-2 virus shedding in patients with HIV infection. Long-term persistence of the virus was discovered in patients with severe immunodeficiency (CD4<200 cl/μl) in the absence of ART. Patients with prolonged viral shedding pose an epidemiological risk in regard to developing new mutational variants of the pathogen.

About the Authors

D. A. Lioznov
Pavlov First Saint Petersburg State Medical University; Smorodintsev Research Institute of Influenza
Russian Federation

St. Petersburg



O. E. Pobegalova
Pavlov First Saint Petersburg State Medical University
Russian Federation

St. Petersburg



N. V. Sabadash
Pavlov First Saint Petersburg State Medical University
Russian Federation

St. Petersburg



E. Yu. Karnaukhova
Pavlov First Saint Petersburg State Medical University
Russian Federation

St. Petersburg



T. V. Antonova
Pavlov First Saint Petersburg State Medical University
Russian Federation

St. Petersburg



A. B. Komissarov
Smorodintsev Research Institute of Influenza
Russian Federation

St. Petersburg



A. A. Ivanova
Smorodintsev Research Institute of Influenza
Russian Federation

St. Petersburg



References

1. Greninger A.L., Rybkina K., Lin M.J. et al. Human parainfluenza virus evolution during lung infection of immunocompromised individuals pro-motes viral persistence // J. Clin. Invest. 2021. Dec 1. Vol. 131, No. 23. Р. e150506. doi: 10.1172/JCI150506.

2. Lehners N., Tabatabai J., Prifert C. et al. Long-Term Shedding of Influenza Virus, Parainfluenza Virus, Respiratory Syncytial Virus and Nosocomial Epidemiology in Patients with Hematological Disorders // PLoS One. 2016. Feb 11. Vol. 11, No. 2. Р. e0148258. doi: 10.1371/journal.pone.0148258.

3. Ison M.G., Gubareva L.V., Atmar R.L., Treanor J., Hayden F.G. Recovery of drug-resistant influenza virus from immunocompromised patients: a case series // J. Infect. Dis. 2006. Mar. 15. Vol. 193, No. 6. Р. 760–764. doi: 10.1086/500465.

4. Memoli M.J., Athota R., Reed S. et al. The natural history of influenza infection in the severely immunocompromised vs nonimmunocompromised hosts // Clin. Infect. Dis. 2014. Jan. Vol. 58, No. 2. Р. 214–224. doi: 10.1093/cid/cit725.

5. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study // Lancet. 2020. Mar. 28. Vol. 395, No. 10229. Р. 1054–1062. doi: 10.1016/S0140-6736(20)30566-3.

6. Young B.E., Ong S.W.X., Kalimuddin S. et al. Singapore 2019 Novel Coronavirus Outbreak Research Team. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore // JAMA. 2020. Apr 21. Vol. 323, Nо. 15. Р. 1488–1494. doi: 10.1001/jama.2020.3204.

7. Cevik M., Tate M., Lloyd O. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis // Lancet Microbe. 2021. Jan; Vol. 2, No. 1. Р. e13-e22. doi: 10.1016/S2666-5247(20)30172-5.

8. Van Kampen J.J.A., van de Vijver D.A.M.C., Fraaij P.L.A. et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19) // Nat. Commun. 2021. Jan 11. Vol. 12, No. 1. Р. 267. doi: 10.1038/s41467-020-20568-4.

9. Rahmani A., Dini G., Leso V. et al. Duration of SARS-CoV-2 shedding and infectivity in the working age population: a systematic review and meta-analysis // Med. Lav. 2022. Apr 26. Vol. 113, No. 2. Р. e2022014. doi: 10.23749/mdl.v113i2.12724.

10. Chen C.F., Tsai T.Y., Yu C.H., Cheng H.L., Yeh T.Y. Prolonged viral shedding and new mutations of COVID-19 could complicate the control of the pandemic // Access Microbiol. 2020. May 27. Vol. 2, No. 7. Р. acmi000133. doi: 10.1099/acmi.0.000133.

11. Avanzato V.A., Matson M.J., Seifert S.N. et al. Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer // Cell. 2020. Dec 23. Vol. 183, No. 7. Р. 1901–1912. e9. doi: 10.1016/j.cell.2020.10.049.

12. Wang M., Luo L., Bu H., Xia H. One case of coronavirus disease 2019 (COVID-19) in a patient co-infected by HIV with a low CD4+ T-cell count // Int. J. Infect. Dis. 2020. Jul. Vol. 96. Р. 148–150. doi: 10.1016/j.ijid.2020.04.06.

13. Sepulcri C., Dentone C., Mikulska M. et al. The Longest Persistence of Viable SARS-CoV-2 With Recurrence of Viremia and Relapsing Symptomatic COVID-19 in an Immunocompromised Patient-A Case Study // Open Forum Infect Dis. 2021. Apr. 28. Vol. 8, No. 11. Р. ofab217. doi: 10.1093/ofid/ofab217.

14. Corey L., Beyrer C., Cohen M.S. et al. SARS-CoV-2 Variants in Patients with Immunosuppression // N. Engl. J. Med. 2021. Aug 5. Vol. 385, No. 6. Р. 562–566. doi: 10.1056/NEJMsb2104756.

15. Vizcarra P., Pérez-Elías M.J., Quereda C. et al. COVID-19 ID Team. Description of COVID-19 in HIV-infected individuals: a single-centre, prospective cohort // Lancet HIV. 2020. Aug. Vol. 7, No. 8. Р. e554-e564. doi: 10.1016/S2352–3018(20)30164–8.

16. Huang J., Xie N., Hu X. et al. Epidemiological, Virological and Serological Features of Coronavirus Disease 2019 (COVID-19) Cases in People Living With Human Immunodeficiency Virus in Wuhan: A Population-based Cohort Study // Clin. Infect. Dis. 2021. Oct 5. Vol. 73, No. 7. Р. e2086-e2094. doi: 10.1093/cid/ciaa1186.

17. Leung W.F., Chorlton S., Tyson J. et al. COVID-19 in an immunocompromised host: persistent shedding of viable SARS-CoV-2 and emergence of multiple mutations: a case report // Int. J. Infect. Dis. 2022 Jan. Vol. 114. Р. 178–182. doi: 10.1016/j.ijid.2021.10.045.

18. Stanevich O.V., Alekseeva E.I., Sergeeva M. et al. SARS-CoV-2 escape from cytotoxic T cells during long-term COVID-19 // Nat. Commun. 2023. Jan 10. Vol. 14, No. 1. Р. 149. doi: 10.1038/s41467-022-34033-x

19. Cele S., Karim F., Lustig G. et al. SARS-CoV-2 prolonged infection during advanced HIV disease evolves extensive immune escape // Cell Host. Microbe. 2022. Feb 9. Vol. 30, No. 2. Р. 154–162. e5. doi: 10.1016/j.chom.2022.01.005.

20. Weigang S., Fuchs J., Zimmer G. et al. Within-host evolution of SARS-CoV-2 in an immunosuppressed COVID-19 patient as a source of immune escape variants // Nat. Commun. 2021. Nov. 4. Vol. 12, No. 1. Р. 6405. doi: 10.1038/s41467-021-26602-3.

21. Rana R., Kant R., Huirem R.S., Bohra D., Ganguly N.K. Omicron variant: Current insights and future directions // Microbiol. Res. 2022. Dec. Vol. 265. Р. 127204. doi: 10.1016/j.micres.2022.127204.

22. Tarcsai K.R., Corolciuc O., Tordai A., Ongrádi J. SARS-CoV-2 infection in HIV-infected patients: potential role in the high mutational load of the Omicron variant emerging in South Africa // Geroscience. 2022. Oct. Vol. 44, No. 5. Р. 2337–2345. doi: 10.1007/s11357-022-00603-6.

23. Bansal N., Raturi M., Bansal Y. SARS-CoV-2 variants in immunocompromised COVID-19 patients: The underlying causes and the way forward // Transfus Clin. Biol. 2022. May. Vol. 29, No. 2. Р. 161–163. doi: 10.1016/j.tracli.2021.12.006.

24. Goes L.R., Siqueira J.D., Garrido M.M. et al. Evidence of recurrent selection of mutations commonly found in SARS-CoV-2 variants of concern in viruses infecting immunocompromised patients // Front Microbiol. 2022. Jul. 26. Vol. 13. Р. 946549. doi: 10.3389/fmicb.2022.946549.

25. Memoli M.J., Athota R., Reed S. et al. The natural history of influenza infection in the severely immunocompromised vs nonimmunocompromised hosts // Clin. Infect. Dis. 2014. Jan. Vol. 58, No. 2. Р. 214–224. doi: 10.1093/cid/cit725.

26. Ahmadi A.S., Zadheidar S., Sadeghi K. et al. SARS-CoV-2 intrahost evolution in immunocompromised patients in comparison with immunocom-petent populations after treatment // J. Med. Virol. 2023. Jun. Vol. 95, No. 6. Р. e28877. doi: 10.1002/jmv.28877.


Review

For citations:


Lioznov D.A., Pobegalova O.E., Sabadash N.V., Karnaukhova E.Yu., Antonova T.V., Komissarov A.B., Ivanova A.A. Duration of SARS-CоV-2 virus shedding in COVID-19 patients with HIV infection. HIV Infection and Immunosuppressive Disorders. 2024;16(4):99-106. (In Russ.) https://doi.org/10.22328/2077-9828-2024-16-4-99-106

Views: 143


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2077-9828 (Print)